

PLAN COMMISSION STAFF REPORT

То:	Members of the Plan Commission				
From:	Tom Vander Woude, Planning Director				
Meeting Date:	November 10, 2020				
Agenda Item:	Discussion				
Hearing:	N/A				
Summary:	Saxon Partners requesting discussion of a proposal to develop the Lansing Country Club.				
Applicant:	Saxon Partners of Hingham, MA represented by Gary Warfel and Kimley-Horn				
Property Address:	Indiana Tract 1, Parcel 45-06-25-100.005.000-027				
Current Zoning:	CD-4.B General Urban B Character District				
Adjacent Zoning:	North: CD-4.B South: SD-M, SD-PUD East: SD-PUD West: Village of Lansing, Illinois				
Action Requested:	Discussion				
Additional Actions Rec	quired: N/A				
Staff Recommendation	n: N/A				
Attachments:	LCC-Saxon Indiana Tract 1 plan set prepared by Kimley-Horn dated 10.23.2020 Fisher Street Widening Concept exhibit prepared by Kimley-Horn undated ALTA/NSPS LAND TITLE SURVEY prepared by DVG Team Inc. dated 09.03.2020 Mixed-Use Development Traffic Impact Study prepared by Kimley- Horn dated September 2020				

1005 Ridge Road • Munster, IN 46321 • (219) 836-8810 • Police/Fire Emergencies 911 Police Non-Emergency (219) 836-6600 • Fire Non-Emergency (219) 836-6960 www.munster.org

BACKGROUND

Saxon Partners, represented by Gary Warfel and Kimley-Horn, have presented plans to redevelop a portion of the Lansing Country Club as a mixed-use medical office district. The 58.82 acre area is bounded on the west by the Village of Lansing, on the north by Fisher Street and a NIPSCO right of way, on the east by a NIPSCO right of way and the NICTD railroad tracks, and on the south by the CN railroad. The most current plans attached to this memo include 381,500 square feet of office space within 9 buildings, 291,000 square feet of flex/innovation space within 6 buildings, and a 9.4 acres of public open space. (Note: previous versions of the plans, including those analyzed by the attached traffic impact study include slightly different square foot totals.)

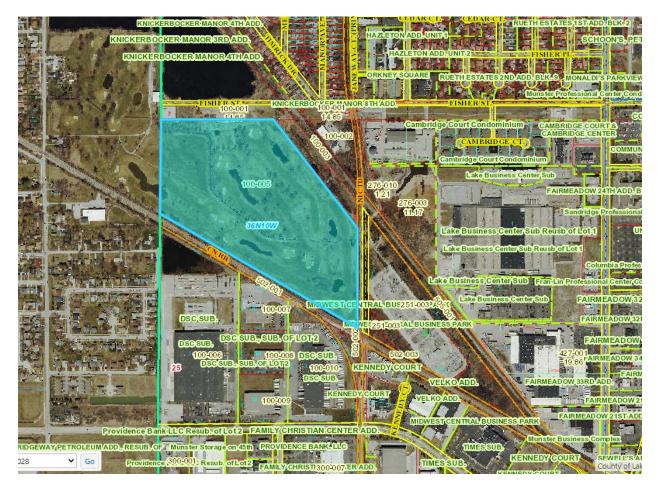


Figure 1: Subject parcel in blue

The Town staff and members of the Town Council have met with the development team on multiple occasions to discuss the project and provide information about the CD-4.B zoning district and the entitlement process.

Saxon Partners presented a Development Parcel Plan at a formal Site Plan Review Committee meeting on October 15, 2020. The plan has since been revised in accordance with committee comments and is

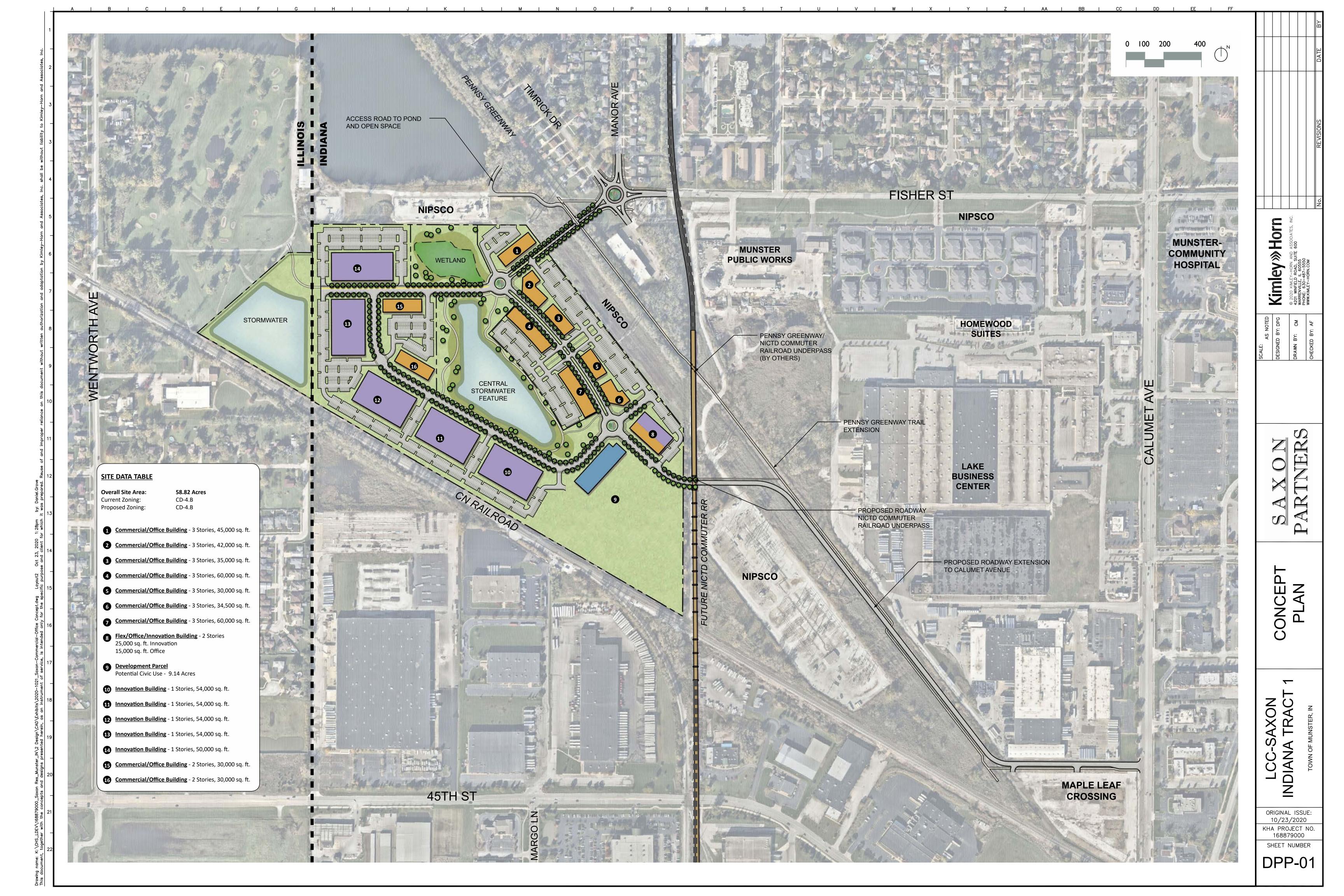
1005 Ridge Road • Munster, IN 46321 • (219) 836-8810 • Police/Fire Emergencies 911 Police Non-Emergency (219) 836-6600 • Fire Non-Emergency (219) 836-6960 www.munster.org attached for Plan Commission review. Staff has certified that the plan presented here meets the standards of the Munster Zoning Ordinance.

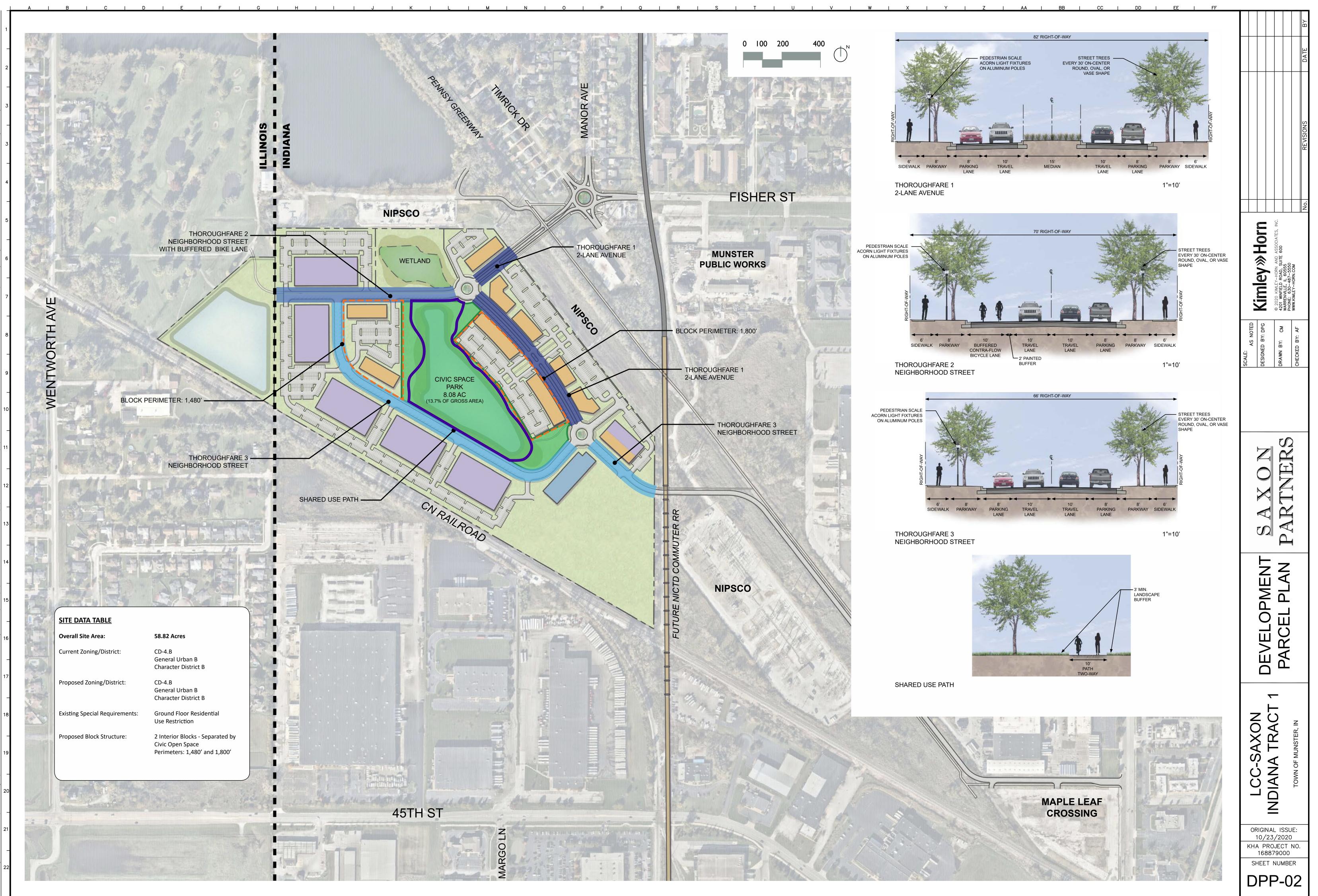
A Traffic Impact Study was prepared by the developer and is attached. The study identifies six recommendations:

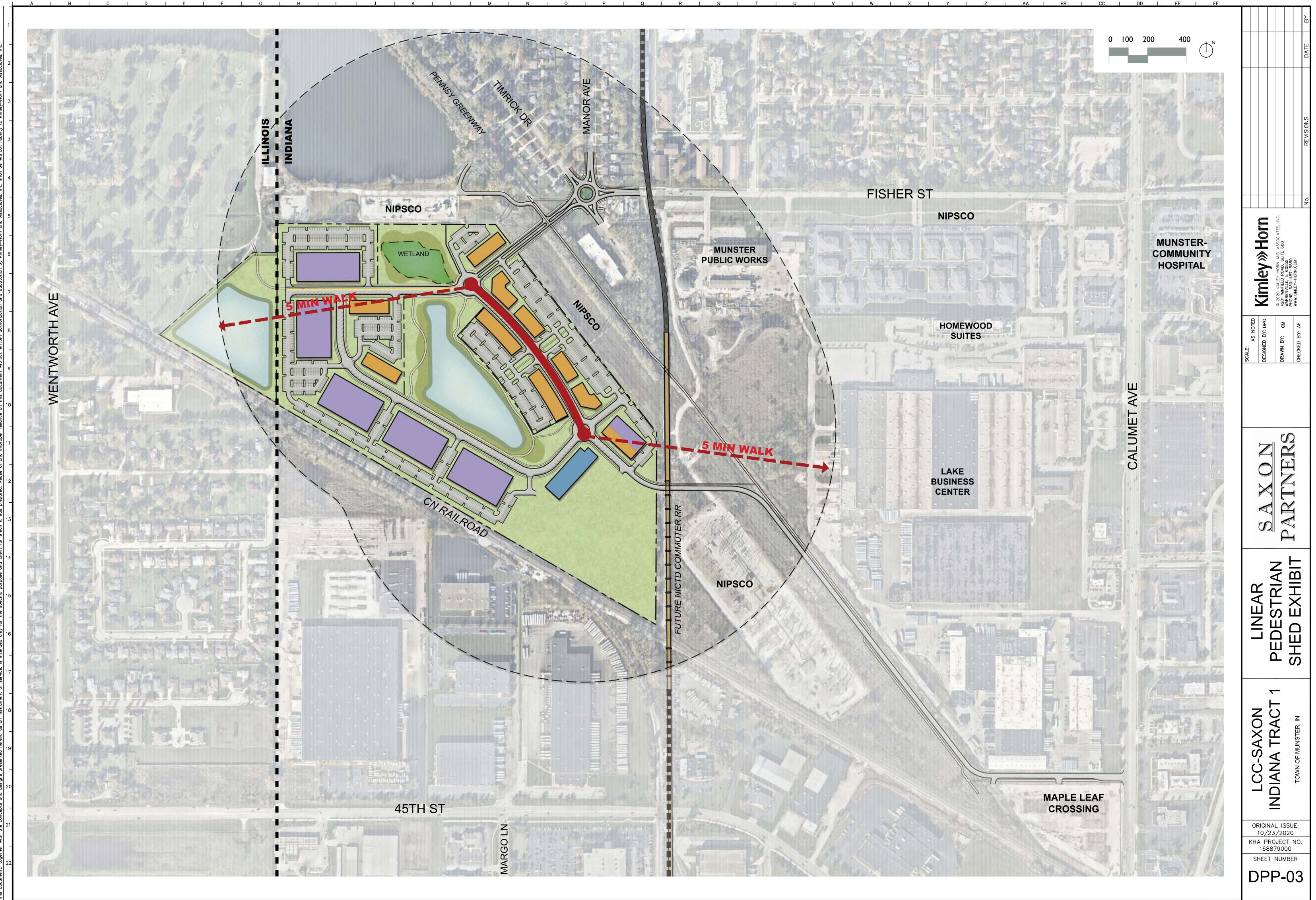
- 1. Improve the existing northwest-southeast roadway along the west side of the Pepsi facility to the Town of Munster public road standards.
- 2. Provide an underpass at the Northern Indiana Transit Commuter District's (NITCD) West Lake Corridor rail alignment (South Access) in order to facilitate secondary access to the proposed Development.
- 3. Install a single-lane roundabout at the intersection of Fisher Street/Timrick Drive/Manor Avenue/Commercial Driveway A/North Access in order to facilitate access to the five-leg intersection.
- 4. Install dual left-turn lanes on the east and west legs of Fisher Street at Calumet Avenue. The existing permitted/protected left-turn phase should be modified to reflect a protected left-turn phase on both legs of Fisher Street.
- 5. Install dedicated right-turn lanes on the east and west legs of the intersection of Calumet Avenue/Fisher Street. According to the INDOT IDM, the turn lane on the east leg should provide 150 feet of storage and a 100-foot taper. Based on the projected 95th percentile queues, the turn lane on the west leg should provide 150 feet of storage with a 100-foot taper.
- 6. Install a new traffic signal at the intersection of Calumet Avenue/Maple Leaf Boulevard per INDOT and Town of Munster requirements.

The attached plans include all the recommendations except #6, which is proposed to be implemented by Maple Leaf Crossing LLC in connection with the Maple Leaf Crossing Planned Unit Development.

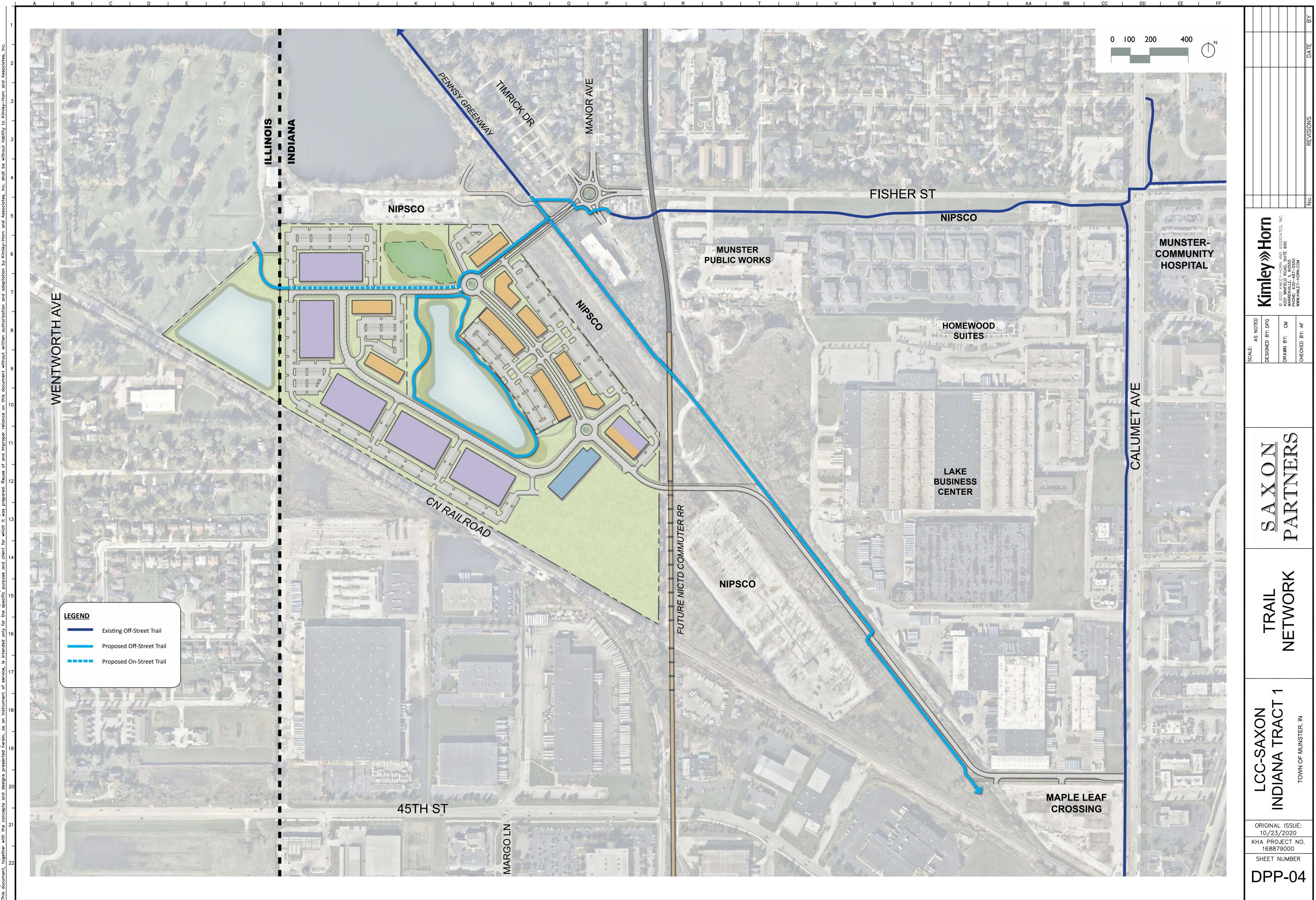
The plan is presented to the Plan Commission for discussion only. Key steps still need to be completed before the developer can submit a formal application for subdivision and development plan approval. These include, but are not necessarily limited to:

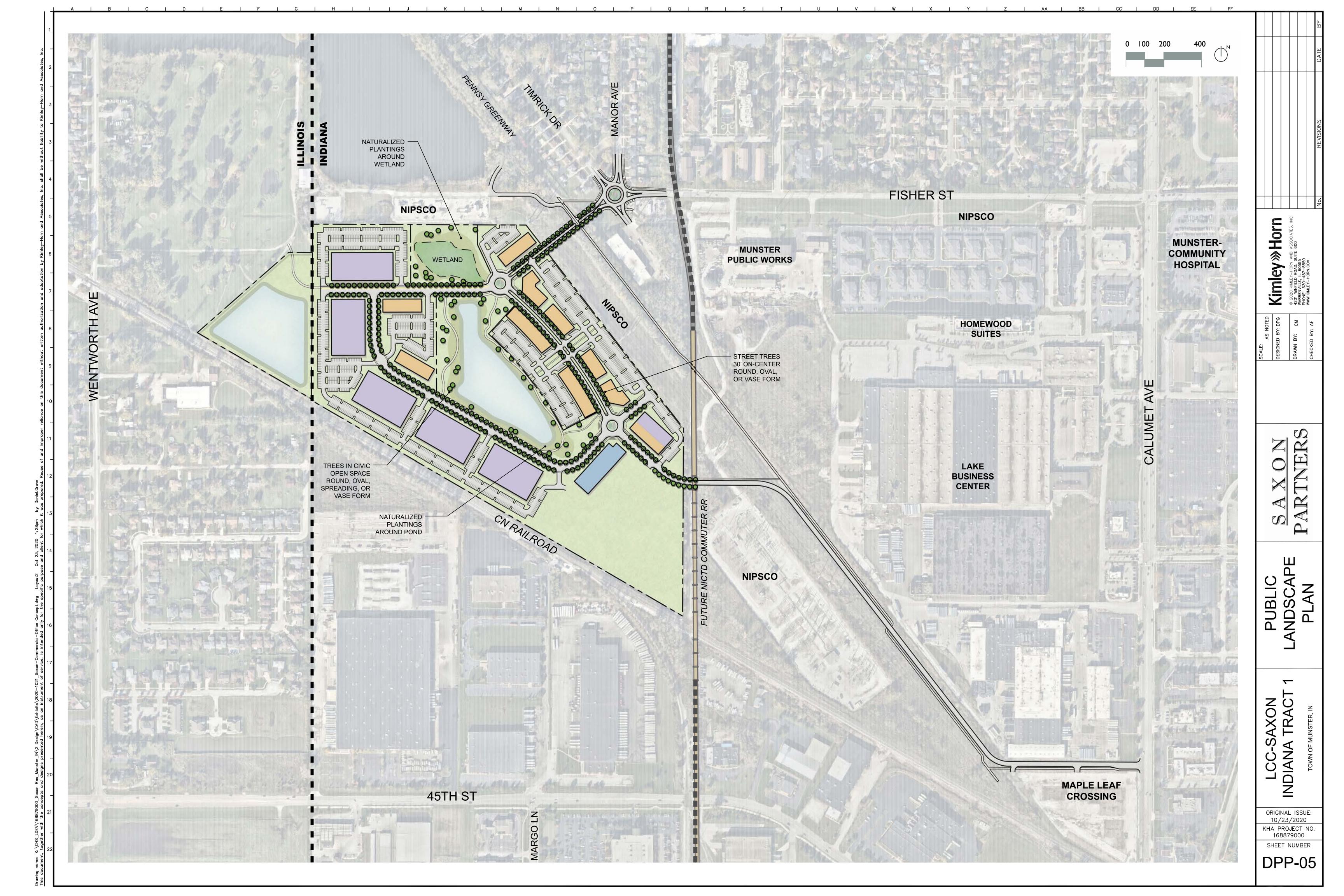

- 1. Acquisition of all property within the footprint of the development
- 2. Securing various easements through NIPSCO right-of-way and NICTD right-of-way
- 3. Negotiation with the Town of Munster and NIPSCO to improve the former Pennsy right-of-way from the NICTD right-of-way to Maple Leaf Crossing.

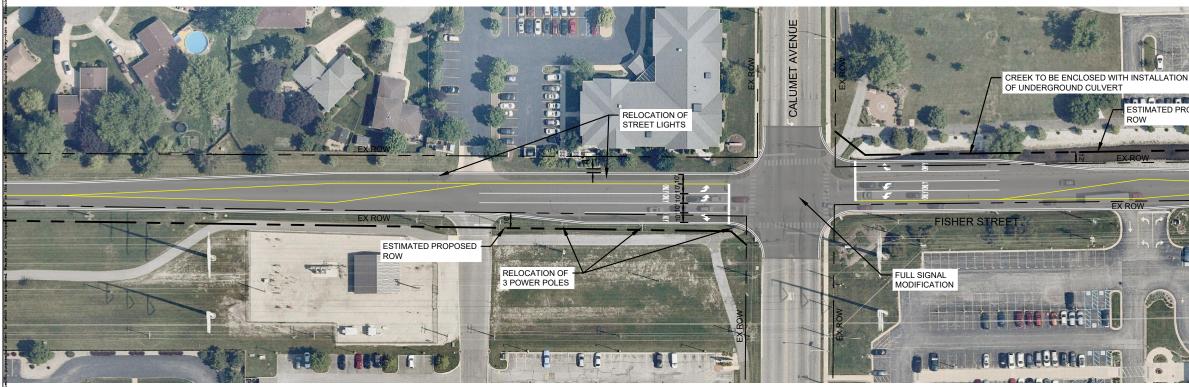

If a formal application is initiated, the following steps will be required:


- 1. Subdivision of the property which will include the platting of individual lots, dedication of easements, roadways, and other public improvements.
- 2. Approval of development plans for all individual buildings and lots.

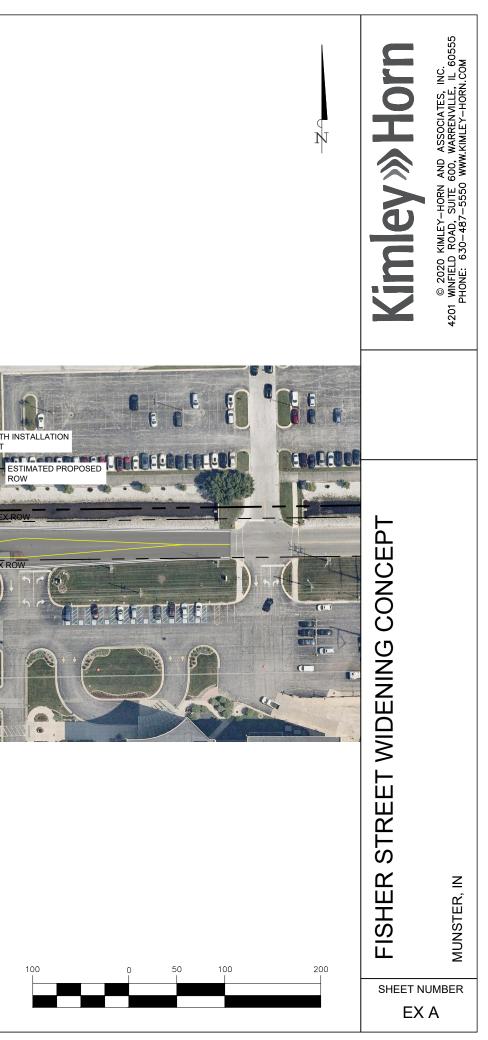
Recommendation


Staff recommends the Plan Commission discuss the attached plans and provide comments to Saxon Partners.

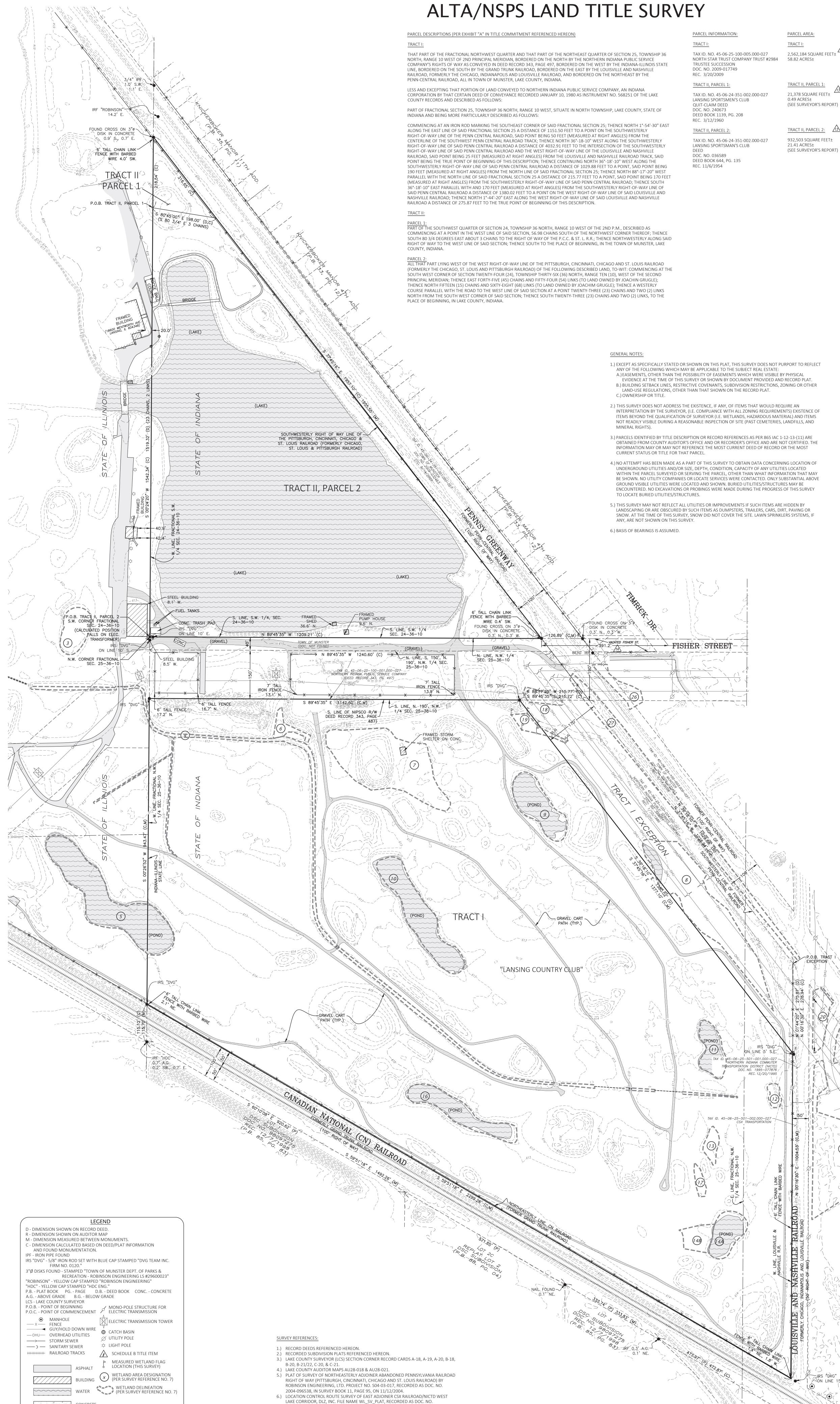


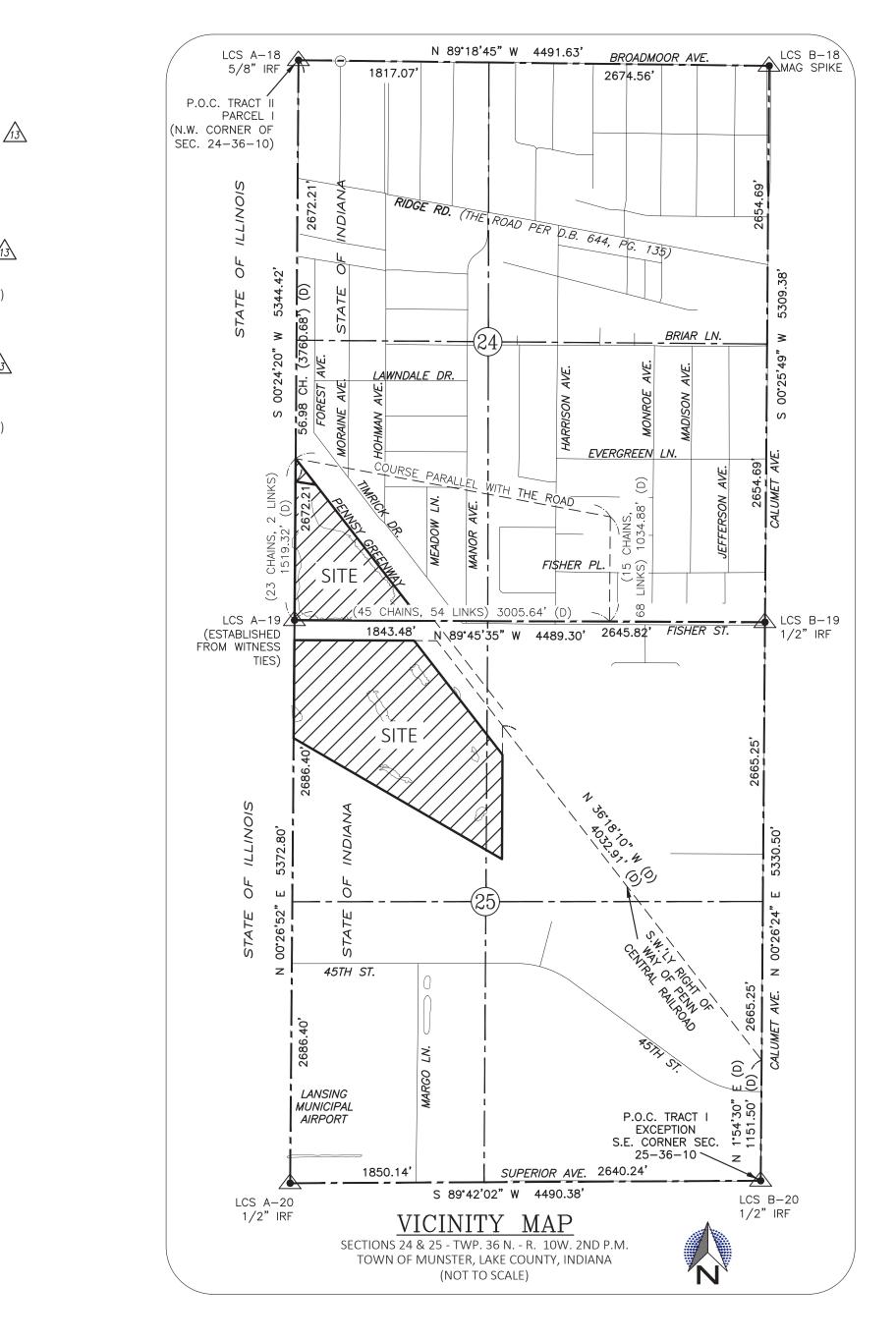


name: K:\CHS_LDEV\168879000_Saxon Res_Munster_IN\2 Design\CAD\Exhibits\2020-1021_Saxon-Commercial-Office Concept.dwg Layout2 Oct 23, 2020 1:28pm by: Daniel.Grove



: K:\CHS_LDEV\168879000_Saxon Res_Munster_IN\2 Design\CAD\Exhibits\2020-1021_Saxon-Commercial-Office Concept.dwg Layout2 Oct 23, 2020 1:28pm by: Daniel.Grove




NOTE: EXISTING RIGHT OF WAY IS APPROXIMATE.

100

	TRACT I:	TRACT I:
	THAT PART OF THE FRACTIONAL NORTHWEST QUARTER AND THAT PART OF THE NORTHEAST QUARTER OF SECTION 25, TOWNSHIP 36 NORTH, RANGE 10 WEST OF 2ND PRINCIPAL MERIDIAN, BORDERED ON THE NORTH BY THE NORTHERN INDIANA PUBLIC SERVICE COMPANY'S RIGHTS OF WAY AS CONVEYED IN DEED RECORD 343, PAGE 497, BORDERED ON THE WEST BY THE INDIANA-ILLINOIS STATE LINE, BORDERED ON THE SOUTH BY THE GRAND TRUNK RAILROAD, BORDERED ON THE EAST BY THE LOUISVILLE AND NASHVILLE RAILROAD, FORMERLY THE CHICAGO, INDIANAPOLIS AND LOUISVILLE RAILROAD, AND BORDERED ON THE NORTHEAST BY THE PENN-CENTRAL RAILROAD, ALL IN TOWN OF MUNSTER, LAKE COUNTY, INDIANA.	TAX ID. NO. 45-06-25-100-005.000- NORTH STAR TRUST COMPANY TRU TRUSTEE SUCCESSION DOC. NO. 2009-017749 REC. 3/20/2009 TRACT II, PARCEL 1:
	LESS AND EXCEPTING THAT PORTION OF LAND CONVEYED TO NORTHERN INDIANA PUBLIC SERVICE COMPANY, AN INDIANA CORPORATION BY THAT CERTAIN DEED OF CONVEYANCE RECORDED JANUARY 10, 1980 AS INSTRUMENT NO. 568251 OF THE LAKE COUNTY RECORDS AND DESCRIBED AS FOLLOWS:	TAX ID. NO. 45-06-24-351-002.000- LANSING SPORTSMEN'S CLUB
	PART OF FRACTIONAL SECTION 25, TOWNSHIP 36 NORTH, RANGE 10 WEST, SITUATE IN NORTH TOWNSHIP, LAKE COUNTY, STATE OF INDIANA AND BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:	QUIT-CLAIM DEED DOC. NO. 240673 DEED BOOK 1139, PG. 208 REC. 3/12/1960
	COMMENCING AT AN IRON ROD MARKING THE SOUTHEAST CORNER OF SAID FRACTIONAL SECTION 25; THENCE NORTH 1°-54'-30" EAST ALONG THE EAST LINE OF SAID FRACTIONAL SECTION 25 A DISTANCE OF 1151.50 FEET TO A POINT ON THE SOUTHWESTERLY	TRACT II, PARCEL 2:
	RIGHT-OF-WAY LINE OF THE PENN CENTRAL RAILROAD, SAID POINT BEING 50 FEET (MEASURED AT RIGHT ANGLES) FROM THE CENTERLINE OF THE SOUTHWEST PENN CENTRAL RAILROAD TRACK; THENCE NORTH 36°-18-10" WEST ALONG THE SOUTHWESTERLY RIGHT-OF-WAY LINE OF SAID PENN CENTRAL RAILROAD A DISTANCE OF 4032.91 FEET TO THE INTERSECTION OF THE SOUTHWESTERLY RIGHT-OF-WAY LINE OF SAID PENN CENTRAL RAILROAD AND THE WEST RIGHT-OF-WAY LINE OF THE LOUISVILLE AND NASHVILLE RAILROAD, SAID POINT BEING 25 FEET (MEASURED AT RIGHT ANGLES) FROM THE LOUISVILLE AND NASHVILLE RAILROAD TRACK, SAID POINT BEING THE TRUE POINT OF BEGINNING OF THIS DESCRIPTION; THENCE CONTINUING NORTH 36°-18'-10" WEST ALONG THE SOUTHWESTERLY RIGHT-OF-WAY LINE OF SAID PENN CENTRAL RAILROAD A DISTANCE OF 1029.88 FEET TO A POINT, SAID POINT BEING 190 FEET (MEASURED AT RIGHT ANGLES) FROM THE NORTH LINE OF SAID FRACTIONAL SECTION 25; THENCE NORTH 88°-17'-20" WEST PARALLEL WITH THE NORTH LINE OF SAID FRACTIONAL SECTION 25 A DISTANCE OF 215.77 FEET TO A POINT, SAID POINT BEING 170 FEET (MEASURED AT RIGHT ANGLES) FROM THE SOUTHWESTERLY RIGHT-OF-WAY LINE OF SAID PENN CENTRAL RAILROAD; THENCE SOUTH 36°-18'-10" EAST PARALLEL WITH AND 170 FEET (MEASURED AT RIGHT ANGLES) FROM THE SOUTHWESTERLY RIGHT-OF-WAY LINE OF SAID PENN CENTRAL RAILROAD A DISTANCE OF 1380.02 FEET TO A POINT ON THE WEST RIGHT-OF-WAY LINE OF SAID LOUISVILLE AND NASHVILLE RAILROAD; THENCE NORTH 1°-44'-20" EAST ALONG THE WEST RIGHT-OF-WAY LINE OF SAID LOUISVILLE AND NASHVILLE RAILROAD A DISTANCE OF 275.87 FEET TO THE TRUE POINT OF BEGINNING OF THIS DESCRIPTION.	TAX ID. NO. 45-06-24-351-002.000- LANSING SPORTSMAN'S CLUB DEED DOC. NO. 036589 DEED BOOK 644, PG. 135 REC. 11/6/1954
	TRACT II:	
	PARCEL 1: PART OF THE SOUTHWEST QUARTER OF SECTION 24, TOWNSHIP 36 NORTH, RANGE 10 WEST OF THE 2ND P.M., DESCRIBED AS COMMENCING AT A POINT IN THE WEST LINE OF SAID SECTION, 56.98 CHAINS SOUTH OF THE NORTHWEST CORNER THEREOF; THENCE SOUTH 80 3/4 DEGREES EAST ABOUT 3 CHAINS TO THE RIGHT OF WAY OF THE P.C.C. & ST. L. R.R.; THENCE NORTHWESTERLY ALONG SAID RIGHT OF WAY TO THE WEST LINE OF SAID SECTION; THENCE SOUTH TO THE PLACE OF BEGINNING, IN THE TOWN OF MUNSTER, LAKE COUNTY, INDIANA.	
	PARCEL 2: ALL THAT PART LYING WEST OF THE WEST RIGHT-OF-WAY LINE OF THE PITTSBURGH, CINCINNATI, CHICAGO AND ST. LOUIS RAILROAD (FORMERLY THE CHICAGO, ST. LOUIS AND PITTSBURGH RAILROAD) OF THE FOLLOWING DESCRIBED LAND, TO-WIT: COMMENCING AT THE SOUTH WEST CORNER OF SECTION TWENTY-FOUR (24), TOWNSHIP THIRTY-SIX (36) NORTH, RANGE TEN (10), WEST OF THE SECOND PRINCIPAL MERIDIAN; THENCE EAST FORTY-FIVE (45) CHAINS AND FIFTY-FOUR (54) LINKS (TO LAND OWNED BY JOACHIN GRUGLE); THENCE NORTH FIFTEEN (15) CHAINS AND SIXTY-EIGHT (68) LINKS (TO LAND OWNED BY JOACHIM GRUGLE); THENCE A WESTERLY COURSE PARALLEL WITH THE ROAD TO THE WEST LINE OF SAID SECTION AT A POINT TWENTY-THREE (23) CHAINS AND TWO (2) LINKS NORTH FROM THE SOUTH WEST CORNER OF SAID SECTION; THENCE SOUTH TWENTY-THREE (23) CHAINS AND TWO (2) LINKS, TO THE PLACE OF BEGINNING, IN LAKE COUNTY, INDIANA.	
x		
/		
	GENERAL NOTES:	

B.) BUILDING SETBACK LINES, RESTRICTIVE COVENANTS, SUBDIVISION RESTRICTIONS, ZONING OR OTHER

- INTERPRETATION BY THE SURVEYOR, (I.E. COMPLIANCE WITH ALL ZONING REQUIREMENTS) EXISTENCE OF ITEMS BEYOND THE QUALIFICATION OF SURVEYOR (I.E. WETLANDS, HAZARDOUS MATERIAL) AND ITEMS NOT READILY VISIBLE DURING A REASONABLE INSPECTION OF SITE (PAST CEMETERIES, LANDFILLS, AND
- 3.) PARCELS IDENTIFIED BY TITLE DESCRIPTION OR RECORD REFERENCES AS PER 865 IAC 1-12-13-(11) ARE OBTAINED FROM COUNTY AUDITOR'S OFFICE AND OR RECORDER'S OFFICE AND ARE NOT CERTIFIED. THE INFORMATION MAY OR MAY NOT REFERENCE THE MOST CURRENT DEED OF RECORD OR THE MOST
- UNDERGROUND UTILITIES AND/OR SIZE, DEPTH, CONDITION, CAPACITY OF ANY UTILITIES LOCATED WITHIN THE PARCEL SURVEYED OR SERVING THE PARCEL, OTHER THAN WHAT INFORMATION THAT MAY BE SHOWN. NO UTILITY COMPANIES OR LOCATE SERVICES WERE CONTACTED. ONLY SUBSTANTIAL ABOVE ENCOUNTERED. NO EXCAVATIONS OR PROBINGS WERE MADE DURING THE PROGRESS OF THIS SURVEY
- 5.) THIS SURVEY MAY NOT REFLECT ALL UTILITIES OR IMPROVEMENTS IF SUCH ITEMS ARE HIDDEN BY LANDSCAPING OR ARE OBSCURED BY SUCH ITEMS AS DUMPSTERS, TRAILERS, CARS, DIRT, PAVING OR SNOW. AT THE TIME OF THIS SURVEY, SNOW DID NOT COVER THE SITE. LAWN SPRINKLERS SYSTEMS, IF

ALTA/NSPS OPTIONAL TABLE "A" SURVEY RESPONSIBILITIES AND SPECIFICATIONS ITEM NOTES

ITEM 1: MONUMENTS SET OR FOUND ARE SHOWN HEREON.

ITEM 2: ADDRESS SHOWN HEREON IS PER THE TITLE COMMITMENT SHOWN HEREON AND WAS NOT OBSERVED DURING THE SURVEY.

ITEM 3: FLOOD ZONE DESIGNATION: THE ACCURACY OF ANY FLOOD HAZARD DATA SHOWN ON THIS PLAT IS SUBJECT TO MAP SCALE UNCERTAINTY AND TO ANY OTHER UNCERTAINTY IN LOCATION OR ELEVATION ON THE FLOOD INSURANCE RATE MAP, (FIRM). THE SUBJECT PARCEL DESCRIBED IN THE PARCEL DESCRIPTION SHOWN HEREON APPEARS TO LIE WITHIN THAT FLOOD HAZARD ZONE "X" AREAS DETERMINED TO BE OUTSIDE OF THE 0.2% ANNUAL CHANCE FLOODPLAIN AS SAID SUBJECT PARCEL PLOTS BY SCALE ON FLOOD INSURANCE RATE FOR THE TOWN OF MUNSTER, LAKE COUNTY, INDIANA, COMMUNITY NUMBER 180139, PANEL NO. 18089C0117E, MAP EFFECTIVE DATE: JANUARY 18, 2012.

ITEM 4: LAND AREA IS SHOWN HEREON.

ITEM 5: VERTICAL RELIEF - ELEVATIONS AND THE RESULTING CONTOURS (1-FOOT INTERVAL UNLESS OTHERWISE SPECIFIED) SHOWN HEREON WERE GENERATED FROM PUBLICLY AVAILABLE 2018 LIDAR DATA (INDIANA SPATIAL DATA PORTAL, gis.iu.edu) AND ARE REFERENCED TO A STATEWIDE GNSS REFERENCE STATION NETWORK KNOWN AS INCORS WHICH IS MAINTAINED BY THE INDIANA DEPARTMENT OF TRANSPORTATION USING THE NORTH AMERICAN VERTICAL DATUM OF 1988.

ITEM 8: SUBSTANTIAL VISIBLE FEATURES SUCH AS PARKING LOTS, BILLBOARDS, SIGNS, SWIMMING POOLS, LANDSCAPED AREAS, AND SUBSTANTIAL AREAS OF REFUSE (IF ANY) ARE SHOWN HEREON.

ITEM 9: THERE ARE NO CLEARLY IDENTIFIABLE PARKING SPACES ON SURFACE PARKING AREAS AND LOTS.

ITEM 11: LOCATION OF UTILITIES EXISTING ON OR SERVING THE SURVEYED PROPERTY WAS DETERMINED BY OBSERVED EVIDENCE AND EVIDENCE FROM PLANS REQUESTED BY THE SURVEYOR AND OBTAINED FROM UTILITY COMPANIES OR PROVIDED BY CLIENT TO DEVELOP A VIEW OF UNDERGROUND UTILITIES. HOWEVER, LACKING EXCAVATION, THE EXACT LOCATION OF UNDERGROUND FEATURES CANNOT BE ACCURATELY, COMPLETELY, AND RELIABLY DEPICTED. LOCATIONS OF UNDERGROUND UTILITIES/STRUCTURES MAY VARY FROM VISIBLE LOCATIONS SHOWN HEREON. ADDITIONAL BURIED UTILITIES/STRUCTURES MAY BE ENCOUNTERED. NO EXCAVATIONS OR PROBINGS WERE MADE DURING THE PROGRESS OF THIS SURVEY TO LOCATE BURIED UTILITIES/STRUCTURES, DRAINAGE TILES, UNDERGROUND DITCHES, FEEDERS OR LATERALS. NO ATTEMPT HAS BEEN MADE AS A PART OF THIS SURVEY TO OBTAIN DATA CONCERNING SIZE, DEPTH, CONDITION, CAPACITY OF ANY UTILITIES LOCATED WITHIN THE SITE SURVEYED OR SERVING THE SITE, UNLESS SHOWN HEREON. A UTILITY LOCATE REQUEST WAS NOT MADE FOR THE SITE. IF ADDITIONAL OR MORE DETAILED INFORMATION IS REQUIRED, EXCAVATION AND/OR A PRIVATE UTILITY LOCATE REQUEST MAY BE NECESSARY.

ITEM 13: NAMES OF ADJOINING OWNERS ACCORDING TO PUBLIC RECORDS ARE SHOWN HEREON. PARCELS IDENTIFIED BY TITLE DESCRIPTION OR RECORD REFERENCES AS PER 865 IAC 1-12-13-(11) ARE OBTAINED FROM COUNTY AUDITOR'S OFFICE AND OR RECORDER'S OFFICE AND ARE NOT CERTIFIED. THE INFORMATION MAY OR MAY NOT REFERENCE THE MOST CURRENT DEED OF RECORD OR THE MOST CURRENT STATUS OR TITLE FOR THAT PARCEL. A TITLE COMMITMENT OR ABSTRACT MAY BE NECESSARY.

ITEM 14: DISTANCE TO THE NEAREST INTERSECTING STREET AS SPECIFIED BY THE CLIENT IS SHOWN HEREON.

ITEM 16: THERE WAS NO EVIDENCE OF RECENT EARTH MOVING WORK, BUILDING CONSTRUCTION OR BUILDING ADDITIONS ON THE SITE OBSERVED IN THE PROCESS OF CONDUCTING THE FIELDWORK.

ITEM 17: THERE ARE NO PROPOSED CHANGES IN STREET RIGHT OF WAY LINES BASED ON LIMITED INFORMATION AVAILABLE FROM THE CONTROLLING JURISDICTION. THERE WAS NO OBSERVABLE EVIDENCE OF RECENT STREET OR SIDEWALK CONSTRUCTION REPAIRS.

ITEM 19: PLOTTABLE OFFSITE EASEMENTS OR SERVITUDES PROVIDED TO OR OBTAINED BY THE SURVEYOR, IF ANY SHOWN HEREON

THIS SURVEY DOES NOT CONSTITUTE A TITLE SEARCH BY THE SURVEYOR. ALL INFORMATION REGARDING RECORD EASEMENTS AND OTHER DOCUMENTS WHICH MIGHT AFFECT THE QUALITY OF TITLE TO PARCEL SHOWN HEREON WAS GAINED FROM A TITLE INSURANCE COMMITMENT NUMBER 102000467 ISSUED BY COMMONWEALTH LAND TITLE INSURANCE COMPANY, ON JULY 7, 2020 AT 8:00 A.M. THE FOLLOWING COMMENTS CORRESPOND TO THE ITEMS NUMBERED IN SCHEDULE B, SECTION 2, EXCEPTIONS IN THE SAID COMMITMENT:

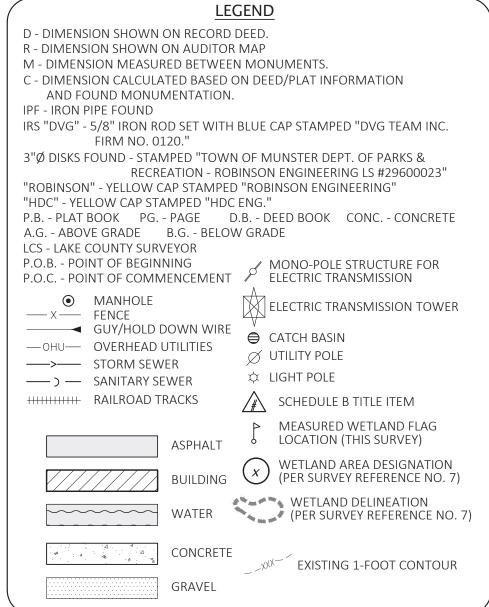
- ITEMS 1-2, 4-6 DEFECTS, LIENS, ENCUMBRANCES, ADVERSE CLAIMS, RIGHT OR CLAIMS, EASEMENTS OR CLAIMS OF EASEMENTS, TAXES OR SPECIAL ASSESSMENTS NOT SHOWN BY PUBLIC RECORDS - NON-SURVEY ITEMS, NOT PLOTTABLE.
 - ITEM 3 ENCROACHMENT, ENCUMBRANCE, VIOLATION, VARIATION, OR ADVERSE CIRCUMSTANCES - SEE SURVEYOR'S REPORT. SURVEYOR ONLY ADDRESSED ITEMS OF RECORD AS PROVIDED.
- ITEMS 7-9 PROPERTY TAXES NON-SURVEY ITEM, NOT PLOTTABLE
- ITEM 10 MUNICIPAL ASSESSMENTS, IF ANY NON SURVEY ITEM, NOT PLOTTABLE.
- ITEM 11 RIGHTS OF WAY FOR DRAINAGE TILE, DITCHES, FEEDERS AND LATERALS, IF ANY - EVIDENCE OF ABOVE GROUND DITCHES SHOWN HEREON.
- ITEM 12 RIGHTS OF PUBLIC, STATE OR MUNICIPALITY FOR LAND TAKEN OR USED FOR ROADS AND HIGHWAYS, IF ANY, - NONE OBSERVED; NO DOCUMENTS PROVIDED.
- ITEM 13 ACREAGE INDICATED IN THE LEGAL DESCRIPTION, AND/OR THE ADDRESS SHOWN ON SCHEDULE A, IS SOLELY FOR THE PURPOSES OF IDENTIFYING SAID TRACT AND SHOULD NOT BE CONSTRUED AS INSURING THE QUANTITY OF LAND, AND/OR THE ADDRESS AS SET FORTH IN THE DESCRIPTION OF THE PROPERTY. APPROXIMATE TRACT/PARCEL ACREAGE SHOWN HEREON.
- ITEM 14 UN-RECORDED LEASES NON-SURVEY ITEM, NOT PLOTTABLE
- ITEM 15 RAILROAD RIGHT OF WAY, SWITCHES AND SPUR TRACKS, IF ANY, AND ALL RIGHTS THEREIN. - RAILROAD RIGHT OF WAYS ON THE SOUTH AND EAST OF SUBJECT PARCELS AS SHOWN HEREON.
- ITEM 16 RESTRICTIONS AND CONDITIONS SET FORTH IN ORDINANCE NO. 24 BY THE TOWN OF MUNSTER RECORDED APRIL 30, 1914 IN MISCELLANEOUS RECORD 76, PAGE 223. - DOES NOT AFFECT SUBJECT PARCELS.

SURVEYOR'S REPORT:

IN ACCORDANCE WITH TITLE 865, ARTICLE 1.0, CHAPTER 12 OF THE INDIANA ADMINISTRATIVE CODE, THE FOLLOWING OBSERVATIONS AND OPINIONS ARE SUBMITTED REGARDING THE VARIOUS UNCERTAINTIES IN THE LOCATION OF THE LINES AND CORNERS ESTABLISHED OR REESTABLISHED ON THIS SURVEY. THIS PLAT REPRESENTS A RETRACEMENT SURVEY OF PARCELS OF LAND SITUATED IN FRACTIONAL SOUTHWEST QUARTER OF SECTION 24 AND FRACTIONAL NORTHWEST QUARTER SECTION 25, TOWNSHIP 36 NORTH, RANGE 10 WEST OF THE SECOND PRINCIPAL MERIDIAN.

THEORY OF LOCATION:

 $(21)^{(1)}$


″D∛G"

QON LINE 15, S.E.

MEASUREMENTS WERE PERFORMED ON FOUND SECTION CORNER MONUMENTS CURRENTLY BEING PERPETUATED BY THE LAKE COUNTY SURVEYOR'S (LCS) OFFICE FOR THE SUBJECT FRACTIONAL SECTIONS 24 AND 25. PER LCS CORNER RECORD CARD FOR SECTION CORNER LCS A-19, THE LOCATION OF THE SECTION CORNER FALLS ON AN EXISTING ELECTRIC TRANSFORMER. SAID SECTION CORNER WAS CALCULATED THIS SURVEY BY RECORD TIES AS NOTED ON SAID LCS CORNER CARD. THE APPLIED SECTION PROPORTIONATE MEASUREMENTS THIS SURVEY FIT OCCUPATION AND MONUMENTATION FOUND AND SHOWN HEREON ALONG WITH SECTION MEASUREMENTS SHOWN ON SURVEY REFERENCE NO. 5 HEREON. THE WEST LINES OF SAID FRACTIONAL SECTIONS ARE THE INDIANA-ILLINOIS STATE LINE, WHICH ARE THE WEST LINES OF THE SUBJECT TRACTS.

THREE INCH BRASS DISKS IN CONCRETE WERE FOUND ALONG THE SOUTHWESTERLY LINE OF THE FORMER PENN-CENTRAL RAILROAD, WHICH APPEAR TO HAVE BEEN SET IN SURVEY REFERENCE NO. 5. AND REPRESENT THE NORTHEASTERLY LINE OF SUBJECT TRACT II, PARCELS 1 & 2. THE SOUTHWESTERLY LINE OF SUBJECT TRACT I IS THE NORTHEASTERLY RIGHT OF WAY LINE OF THE CANADIAN NATIONAL RAILROAD (FORMERLY GRAND TRUNK RAILROAD) AND WAS ESTABLISHED BY A SPLIT OF THE SOUTHERLY SET OF RAILS AS THE CENTERLINE OF THE 100 FOOT RIGHT OF WAY. MONUMENTATION FOUND AND SHOWN HEREON ALONG THE SOUTHWESTERLY LINE OF LAST SAID RAILROAD FIT WELL WITH THIS SOLUTION.

A.) CONDITION OF FOUND REFERENCE MONUMENTS: UNLESS OTHERWISE STATED ON THIS PLAT, REFERENCE

MONUMENTS WERE FOUND UNDISTURBED, AT OR NEAR GRADE AND OF UNKNOWN ORIGIN. UNCERTAINTY IN LOCATION OF FOUND MONUMENTS MEASURED UP TO 1.0 FEET NORTH-SOUTH, AND UP TO 1.1 FEET EAST-WEST.

B.) APPARENT UNCERTAINTIES DUE TO SUBSTANTIAL OBSERVED OCCUPATION OR POSSESSION ARE: 1.) FENCES AT OR NEAR THE NORTHEASTERLY, SOUTHWESTERLY, AND EASTERLY LINES OF THE SUBJECT TRACTS AS SHOWN AND DIMENSIONED HEREON.

2.) A GRAVEL CART PATH WAS LOCATED NORTHEAST OF THE NORTHEASTERLY LINE OF SUBJECT TRACT I AS SHOWN HEREON.

3.) VARIOUS IMPROVEMENTS INCLUDING PAVEMENT, BOCCE BALL COURTS, AND GRAVEL AREAS WERE LOCATED WEST OF THE WEST LINE OF SUBJECT TRACT II, PARCELS 1 & 2 AS SHOWN HEREON.

C.) APPARENT UNCERTAINTIES IN RECORD DESCRIPTIONS ARE AS FOLLOWS: THE DESCRIPTION FOR TRACT II, PARCEL 1 CALLS FOR A COMMENCEMENT AT A POINT IN THE WEST LINE OF SECTION 24 THAT IS 56.98 CHAINS (3760.68') SOUTH OF THE NORTHWEST CORNER OF SAID SECTION. THIS MATHEMATICALLY OVERLAPS THE DESCRIPTION OF THE SUBJECT TRACT II, PARCEL 1. IT IS CLEAR FROM THE DESCRIPTIONS THAT THE INTENT WAS FOR THE TWO PARCELS TO BE BOUNDED BY THE STATE LINE ON THE WEST AND ON THE EAST BY THE SOUTHWESTERLY LINE OF FORMER PENN-CENTRAL RAILROAD. THE UNCERTAINTY CREATED BY THE DISTANCE CALLS IS UP TO 200 FEET IN A NORTH-SOUTH DIRECTION. THE INTENT WAS HELD THIS SURVEY WITH THE DIMENSIONS NOTED HEREON.

D.) THE RELATIVE POSITIONAL ACCURACY (DUE TO RANDOM ERRORS IN MEASUREMENTS) FOR THIS SURVEY, BASED ON EQUIPMENT AND PROCEDURES USED, WAS WITHIN THE ALLOWABLE (0.07 FEET PLUS 50 PARTS PER MILLION) FOR AN URBAN SURVEY, PER 865 IAC 1-12-7.

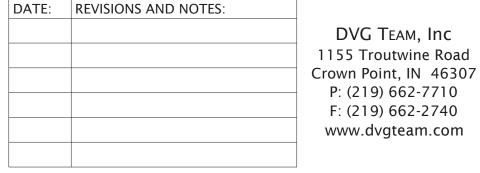
TO: SAXON PARTNERS, LLC. AND COMMONWEALTH LAND TITLE INSURANCE COMPANY;

THIS IS TO CERTIFY THAT THIS MAP OR PLAT AND THE SURVEY ON WHICH IT IS BASED WERE MADE IN ACCORDANCE WITH THE 2016 MINIMUM STANDARD DETAIL REQUIREMENTS FOR ALTA/NSPS LAND TITLE SURVEYS, JOINTLY ESTABLISHED AND ADOPTED BY ALTA AND NSPS, AND INCLUDES ITEMS 1, 2, 3, 4, 5, 8, 9, 11, 13, 14, 16, 17, AND 19 OF TABLE A THEREOF. THE FIELD WORK WAS COMPLETED ON SEPTEMBER 1, 2020. I FURTHER STATE THAT THIS SURVEY WAS PERFORMED IN ACCORDANCE WITH THE GUIDELINES SET IN TITLE 865 IAC 1-12 (RULE 12).

pnejman@dvgteam.com

PROFESSIONAL SURVEYOR: PATRICK H. NEJMAN

INDIANA REGISTRATION NUMBER: LS21600004



\20-1010.dwg DATE: REVISIONS AND NOTES: FILE NO. FB/PG ALTA/NSPS LAND TITLE SURVEY DRAWN BY DATE STATE NE & SCHOON DITCH SAXON PHN 9/3/2020 PARTNERS, LLC MUNSTER, IN 46321 SECTION COUNTY 24/25-36-10 LAKE, IN 0' 50' 100 PART OF FRACTIONAL S.W. 1/4 SEC. 24 & FRACTIONAL N.W. 1/4 SEC. 25-T36N-R10W PROJECT NO. SCALE: 1" =100' S20-1010

2019-013294, IN SURVEY BOOK 33, PAGE 16, ON 3/5/2019.

DATED JULY 27, 2020, PROJECT NUMBER 20359.

7.) WETLAND DELINEATION AND ASSESSMENT REPORT PREPARED BY V3 COMPANIES, LTD.

MIXED-USE DEVELOPMENT

Traffic Impact Study

Munster, Indiana

September 2020

Prepared for:

Saxon Partners, LLC

Kimley **»Horn**

TABLE OF CONTENTS

1.	Introduction	2
2.	Existing Conditions	4
3.	Future Conditions	12
4.	Recommendations & Conclusions	22

LIST OF TABLES

Table 2.1. Comparison of INDOT AADT Counts and StreetLight Estimates	6
Table 2.2. Level of Service Grading Descriptions	7
Table 2.3. Level of Service Grading Criteria	9
Table 2.4. Existing (2019) Levels of Service	10
Table 3.1. ITE Trip Generation Data by Land Use	12
Table 3.2. Site-Generated Traffic Projections	13
Table 3.3. Directional Distribution Percentages	13
Table 3.4. Signal Warrant 1 – Calumet Avenue / Maple Leaf Boulevard	19
Table 3.5. Future (2023) Build Levels of Service	20

LIST OF EXHIBITS

Exhibit 1. Site Location Map	3
Exhibit 2. Existing (2019) Traffic Volumes	8
Exhibit 3. Site Trip Assignment – Total	14
Exhibit 4. Future (2023) Background Traffic Projections	16
Exhibit 5. Future (2023) Build Traffic Projections	17

1. INTRODUCTION

Kimley-Horn and Associates, Inc., (Kimley-Horn) was retained by Saxon Partners, LLC to prepare a traffic impact study for a proposed development located at the western terminus of Fisher Street in Munster, Indiana. The proposed development is comprised of 475,500 square feet of office use and 305,000 square feet of research and development/innovation use. In order to accommodate the development, the existing Lansing Country Club would be removed. Note that the western portion of the golf course, located within the boundary of Lansing, Illinois, is not included as part of the proposed development plan. An aerial view of the study location and the surrounding roadway network is presented in **Exhibit 1.**

Access to the development would be provided via a connection to Fisher Street at its western terminus (referred to herein as North Access). With the proposed development, a single-lane roundabout would be installed at the intersection of Fisher Street/Timrick Drive/Manor Avenue/Private Driveway A/North Access. In addition, access would be provided via Maple Leaf Boulevard, a new east-west roadway located along the northern boundary of Maple Leaf Crossing. Maple Leaf Boulevard will provide access to the existing northwest-southeast roadway located on the west side of the Pepsi facility. As part of the proposed development, this roadway would be improved to public road standards. In order to provide connectivity to the development, an underpass is planned for the Northern Indiana Transit Commuter District's (NITCD) West Lake Corridor rail alignment (referred to herein as South Access). A copy of the conceptual site plan is included in the appendix.

As a part of this study, the existing network was analyzed to determine the current operations at the study intersections. In order to assess the site's impact on the area roadway network, site-generated trips were established and added to background traffic volumes. Consistent with Indiana Department of Transportation (INDOT) requirements, future traffic conditions were evaluated for the anticipated completion date of the proposed development, assuming full buildout and occupancy (Year 2023).

This report presents and documents Kimley-Horn's data collection, summarizes the evaluation of existing and projected future traffic conditions on the surrounding roadways, and identifies recommendations to address the potential impact of site-generated traffic on the adjacent roadway network.

Kimley» Horn

EXHIBIT 1 SITE LOCATION MAP

2. EXISTING CONDITIONS

Kimley-Horn conducted a field visit to collect relevant information pertaining to existing land uses in the surrounding area, the adjacent street system, current traffic volumes and operating conditions, lane configurations and traffic controls at nearby intersections, and other key roadway characteristics. This section of the report details information on these existing conditions.

2.1 Area Connectivity & Land Uses

The proposed development is located at the western terminus of Fisher Street in Munster, Indiana. The existing Lansing Country Club would be removed to accommodate the proposed development. The western portion of the existing golf course, located in Lansing, Illinois, is not included in the development plan.

The subject property is bounded by Canadian National Railroad on the southwest and the Pennsy Greenway on the northeast. Northern Indiana Transit Commuter District's (NITCD) proposed West Lake Corridor rail alignment is also located on the east side of the subject property. Access to the site is currently provided via an access driveway to Wentworth Avenue in Lansing, Illinois.

Through the study area, Calumet Avenue provides north-south access through the Town of Munster. Located approximately one-half mile east of the subject property, Calumet Avenue provides a full interchange with Interstate 94 approximately one and one-half miles to the north. Interstate 94 provides east-west access across the State of Indiana.

The Town of Munster is currently constructing an underpass for 45th Street below the Canadian National Railroad. As part of this project, the east leg of 45th Street at Calumet Avenue will be realigned to meet the existing west leg of the intersection, located south of the Canadian National Railroad. The Pennsy Greenway will be extended to provide a continuous multiuse trail through the intersection of Calumet Avenue/45th Street.

The area surrounding the subject property is developed with a mix of resident, commercial, and industrial uses. Residential uses are located north, south, and west of the site. Industrial uses are primarily located south of the Canadian National Railroad. Commercial uses front Calumet Avenue through the study area. A mixed-use development, referred to as Maple Leaf Crossing, is currently under construction at the northwest quadrant of the former intersection of Calumet Avenue/45th Street.

2.2 Roadway Characteristics

A field investigation was conducted within the study area. As a result of this visit, the following information was obtained about the existing roadway network.

Calumet Avenue is a four-lane, north-south roadway classified by INDOT as a Principal Arterial in the study area. North of Fran Lin Parkway, Calumet Avenue provides two travel lanes in each direction with dedicated left-turn lanes provided at intersections and driveways. South of Fran Lin Parkway, Calumet Avenue provides two travel lanes in each direction with a continuous two-way left-

turn lane (TWLTL) in the center median. At its signalized intersection with Fisher Street, Calumet Avenue provides a dedicated left-turn lane, one through lane, and a shared through/right-turn lane on both the north and south legs. Striped crosswalks and pedestrian pushbuttons are provided on both legs of Calumet Avenue at Fisher Street. At its intersection with Maple Leaf Boulevard, Calumet Avenue provides two travel lanes in each direction and a TWLTL in the center median. Calumet Avenue operates under a free-flow condition with minor-leg stop control posted on Maple Leaf Boulevard. A 35-mile per hour (MPH) speed limit is posted within the vicinity of the project area. Calumet Avenue is under the Town of Munster jurisdiction through the study area.

Fisher Street is a two-lane, east-west roadway classified by INDOT as a Major Collector. The typical section of the existing roadway includes one travel lane in each direction. The Pennsy Greenway is located on the south side of Fisher Street from Timrick Drive to Calumet Avenue. At its signalized intersection with Calumet Avenue, Fisher Street provides a dedicated left-turn lane and one shared through/right-turn lane on the east and west legs. Striped crosswalks and pedestrian pushbuttons are provided on both legs of Fisher Street at Calumet Avenue. A 35 MPH speed limit is posted on Fisher Street. Fisher Street is under the Town of Munster jurisdiction.

Fran Lin Parkway extends east from Calumet Avenue. Classified by INDOT as a Major Collector, Fran Lin Parkway provides a single travel lane in each direction. Near its intersection with Calumet Avenue, Fran Lin Parkway is a divided roadway with a landscaped center median. Dedicated bike lanes are provided on both the north and south sides of the street. At its signalized intersection with Calumet Avenue, Fran Lin Parkway provides a dedicated left-turn lane and a shared through/rightturn lane on the east leg. A striped crosswalk and pedestrian pushbuttons are provided on Fran Lin Parkway. The west leg of the intersection is Commercial Driveway B. A 35 MPH speed limit is posted on Fran Lin Parkway in the study area.

Commercial Driveway A extends south of Fisher Street near its western terminus. This private driveway provides access to an existing office building. Commercial Driveway A provides a single lane in each direction and was assumed to operate under minor-leg stop control. For purposes of this analysis, a 25 MPH speed limit was assumed for Commercial Driveway A.

Commercial Driveway B extends west of Calumet Avenue aligned opposite Fran Lin Parkway. At its signalized intersection with Calumet Avenue, Commercial Driveway B provides a shared leftturn/through lane and a dedicated right-turn lane. A striped crosswalk and pedestrian pushbuttons are provided on Commercial Driveway B. Commercial Driveway B is a private driveway. For purposes of this analysis, a 25 MPH speed limit was assumed.

Timrick Drive is a two-lane, northwest-southwest roadway which extends northwest from Fisher Street. Classified by INDOT as a Major Collector, Timrick Drive operates under a free-flow condition at Fisher Street. A 25 MPH speed limit is posted on Timrick Drive in the study area. Timrick Drive is under the Town of Munster jurisdiction.

Manor Avenue extends north from Fisher Street and provides north-south access through the study area. At its intersection with Fisher Street, Manor Avenue operates under minor-leg stop control and provides a single shared lane. Classified by INDOT as a Minor Collector, Manor Avenue is under the

Town of Munster jurisdiction. A residential speed limit of 25 MPH is posted on Manor Avenue through the study area.

Maple Leaf Boulevard was recently dedicated as public right-of-way as part of the Maple Leaf Crossing development, located on the west side of Calumet Avenue north of the former 45th Street intersection. The Maple Leaf Crossing development is currently under construction; and therefore, Maple Leaf Boulevard was assumed for the analysis of future conditions only. Upon completion, Maple Leaf Boulevard will provide a single travel lane in each direction and will operate under minor-leg stop control. Maple Leaf Boulevard is under the Town of Munster jurisdiction. For purposes of this analysis, a 25 MPH speed limit was assumed.

2.3 Traffic Count Data

At the time of this study, traffic conditions in the study area were considered atypical due to circumstances associated with the COVID-19 public health crisis. In addition, ongoing construction at the Calumet Avenue/45th Street intersection and the Maple Leaf Crossing development have impacted traffic patterns along the Calumet Avenue corridor. In lieu of traffic count data collection, Kimley-Horn obtained traffic volume estimates through a service called StreetLight Data that provides anonymized data from mobile phones and GPS devices, aggregated over four months in 2019, to identify traffic volumes and patterns through study intersections. With the availability of past daily traffic counts along study area roadways, the estimated volumes collected through StreetLight Data were compared and adjusted to calibrate with historic traffic levels.

For purposes of this analysis, traffic volume estimates through StreetLight Data was obtained for a typical weekday. The data represents an average of observed volumes on Tuesdays, Wednesdays, and Thursdays in March, April, September, and October 2019. The selected months were chosen to capture traffic patterns prior to COVID-19 while avoiding atypical travel periods around holidays and summer months. Data for typical weekdays was collected from 6:00AM to 9:00AM and 3:00PM to 6:00PM. Based on this data, the resulting peak hours occur from 7:00AM to 8:00AM and 3:00PM to 4:00PM for the weekday morning and evening peak periods.

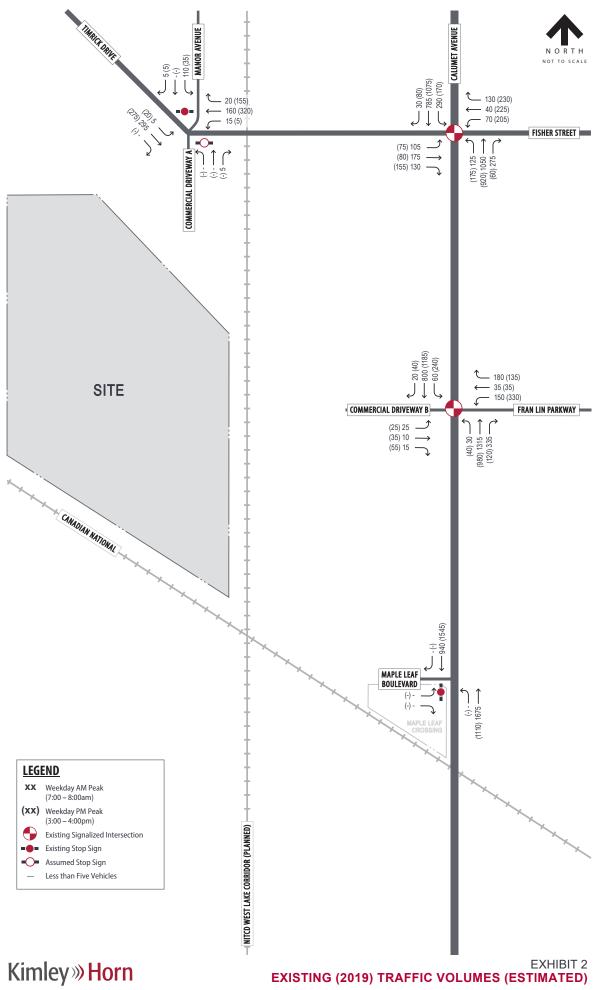
In order to calibrate the available StreetLight Data traffic volumes for the study area, estimated daily traffic volumes for three roadway segments in the study area were collected from StreetLight Data and compared to INDOT average annual daily traffic volumes (AADT). A comparison of the StreetLight Data estimated daily traffic volumes to actual INDOT AADT data is shown in **Table 2.1**.

	INDOT Count	2019	Difference		
Count Location	Station ID	INDOT Count	StreetLight Data Estimate	(Percent)	
Calumet Avenue North of 45th Street (East Leg)	45X221	31,490	36,524	16%	
Fisher Street West of Calumet Avenue	45W226	7,890	8,824	12%	
Timrick Drive West of Manor Avenue	45W241	4,963	5,905	19%	
Overall		44,343	51,253	16%	

Kimley »Horn

As shown in Table 2.1, the estimated daily traffic volumes obtained from StreetLight Data are, overall, approximately 15 percent higher than INDOT AADT. As such, the turning movement counts obtained from StreetLight Data were reduced by 15 percent in order to reflect typical traffic conditions on the area roadways. The adjusted traffic volumes were rounded to the nearest multiple of five and balanced between intersections. The 2019 existing traffic volumes are presented in **Exhibit 2**.

Existing Capacity Analysis


Capacity analyses were conducted to assess existing and future build operating conditions at the study intersections during the weekday peak hours. The capacity of an intersection quantifies its ability to accommodate traffic volumes and is expressed in terms of level of service (LOS), measured in average delay per vehicle. LOS grades range from A to F, with LOS A as the highest (best traffic flow and least delay), LOS E as saturated or at-capacity conditions, and LOS F as the lowest (oversaturated conditions).

The LOS grades shown below, which are provided in the Transportation Research Board's <u>Highway</u> <u>Capacity Manual</u> (HCM), quantify and categorize the driver's discomfort, frustration, fuel consumption, and travel times experienced as a result of intersection control and the resulting traffic queuing. A detailed description of each LOS rating can be found in **Table 2.2**.

Level of Service	Description
А	Minimal control delay; traffic operates at primarily free-flow conditions; unimpeded movement within traffic stream.
В	Minor control delay at signalized intersections; traffic operates at a fairly unimpeded level with slightly restricted movement within traffic stream.
С	Moderate control delay; movement within traffic stream more restricted than at LOS B; formation of queues contributes to lower average travel speeds.
D	Considerable control delay that may be substantially increased by small increases in flow; average travel speeds continue to decrease.
E	High control delay; average travel speed no more than 33 percent of free flow speed.
F	Extremely high control delay; extensive queuing and high volumes create exceedingly restricted traffic flow.

Table 2.2. Level of Service Grading Descriptions¹

¹Highway Capacity Manual, 6th Edition

The range of control delay for each rating (as detailed in the HCM) is shown in **Table 2.3**. Because signalized intersections are expected to carry a larger volume of vehicles and stopping is required during red time, higher delays are tolerated for the corresponding LOS ratings.

Level of Service	Average Control Delay (s/veh) at:				
Level of Service	Unsignalized Intersections	Signalized Intersections			
А	0 – 10	0 – 10			
В	> 10 – 15	> 10 – 20			
С	> 15 – 25	> 20 – 35			
D	> 25 – 35	> 35 – 55			
E	> 35 – 50	> 55 – 80			
F ²	> 50	> 80			

Table 2.3. Level of Service Grading Criteria¹

¹Highway Capacity Manual, 6th Edition

²All movements with a Volume to Capacity (v/C) ratio greater than 1 receive a rating of LOS F.

Synchro software was utilized to evaluate capacity of the study intersections. Signal timing data for typical conditions (i.e., before COVID-19 and absent area construction activity) was obtained from *Traffic Impact Study for Country Club Business Park*, prepared by Garcia Consulting Engineers (dated April 26, 2017).

Table 2.4 summarizes the capacity analysis results for existing peak hour traffic conditions. In this table, operation on each approach is quantified according to the average delay per vehicle and the corresponding level of service. Overall intersection operations are reported for all signalized intersections but not reported for minor-leg stop-controlled intersections, since the majority of vehicles are able to move through the intersection with little to no delay. The results presented in Table 2.4 are based on Synchro's HCM 6th Edition reports. Copies of the capacity analysis reports are provided in the appendix.

Table 2.4. Existing (2019) Levels of Service

latere atten	AM Pe	ak Hour	PM Peak Hour		
Intersection	Delay (s/veh)	LOS	Delay (s/veh)	LOS	
Fisher Street / Timrick Drive / Manor Avenue / Commercial Driveway A					
Eastbound (Left)	8	A	9	А	
Westbound (Left)	8	А	8	А	
Northbound	11	В	15	С	
Southbound	16	С	18	С	
Calumet Avenue / Fisher Street					
Eastbound	47	D	33	С	
Westbound	31	С	>120	F	
Northbound	30	С	21	С	
Southbound	48	D ¹	24	С	
Intersection	38	D	47	D	
Calumet Avenue / Fran Lin Parkway / Commercial Driveway B					
Eastbound	33	С	36	D	
Westbound	32	С	51	D ²	
Northbound	22	С	29	С	
Southbound	11	В	22	С	
Intersection	20-	В	29	С	

★ - Signalized Intersection

 $\bigtriangleup\,$ - Two-Way Stop Control Intersection

¹Left-turn operates at LOS F

²Left-turn operates at LOS E

As shown in Table 2.4 the signalized intersections are expected to operate at an overall LOS D or better during the peak hours. However, certain intersection movements and approaches exhibit capacity issues as detailed below.

The southbound left-turn movement at the Calumet Avenue/Fisher Street intersection is estimated to operate at LOS F during the morning peak hour. According to the capacity analysis, the 95th percentile queue estimated for the southbound left-turn movement is 425 feet (17 vehicles), which would exceed the existing 150-foot storage lane. The results of this analysis may be conservative and field observations during typical conditions (i.e., following the COVID-19 public health crisis and absent area construction activity) would be needed in order to verify the results of this analysis. During the evening peak hour, the westbound approach of Fisher Street is estimated to operate at LOS F. This is, in part, attributable to the signal timing priority given to north-south traffic on Calumet Avenue. Long periods of green time (67% or 52G + 3.5Y + 0.5R / 90 seconds in morning peak hour; 73% or 58G + 3.5Y + 0.5R / 90 in evening peak hour) are allocated to Calumet Avenue and the minor street approaches (i.e., Fisher Street) receive relatively short green times (38% or 30G + 3.5Y + 0.5R / 90 in morning peak hour; 27% or 24G + 3.5Y + 0.5R / 90 in evening peak hour).

Kimley »Horn

At the signalized intersection of Calumet Avenue/Fran Lin Parkway/Commercial Driveway B, all intersection approaches and movements are estimated to operate at LOS D or better with one exception. During the evening peak hour, the westbound left-turn is estimated to operate at LOS E. The 95th percentile queue is approximately 225 feet (9 vehicles), which would exceed the existing 50-foot storage lane. Again, field observations under typical conditions would be needed in order to verify the results of this analysis.

Minimal delay (LOS C or better) is estimated for all approaches and movements at the unsignalized intersection of Fisher Street/Timrick Drive/Manor Avenue. During the peak hours, the 95th percentile queues are approximately 25 feet (1 vehicle) or less.

3. FUTURE CONDITIONS

This section of the report outlines the proposed site plan, summarizes site-specific traffic characteristics, and develops future traffic projections for analysis.

3.1 Development Characteristics & Site Access

The proposed development includes 475,500 square feet of office use and 305,000 square feet of research and development/innovation use. For the purposes of this analysis, the entirety of the proposed development is assumed to be completed and occupied in 2023.

Access to the development would be provided via a connection to Fisher Street at its western terminus (referred to herein as North Access). With the proposed development, a single-lane roundabout would be installed at the intersection of Fisher Street/Timrick Drive/Manor Avenue/North Access. In addition, access would be provided via Maple Leaf Boulevard. As part of development of Maple Leaf Crossing, Maple Leaf Boulevard will be extended west of Calumet Avenue to the existing northwest-southeast roadway located on the west side of the Pepsi facility. This roadway would be improved to public road standards as part of the proposed development. In order to provide connectivity to the site, an underpass is planned for the Northern Indiana Transit Commuter District's (NITCD) West Lake Corridor rail alignment. A copy of the conceptual site plan is included in the appendix.

3.2 Trip Generation

In order to calculate trips generated by the proposed development, data was referenced from the Institute of Transportation Engineers (ITE) manual titled *Trip Generation*, *10th Edition*. Where available, the trip generation equation for each ITE Land Use Code (LUC) corresponding to a proposed use is shown in **Table 3.1**; where a trip generation equation was not provided by ITE, the average rate is shown. Copies of the ITE data are provided in the appendix.

ITE Land Use	Unit	AM Peak Hour	PM Peak Hour
Research &	Per 1,000 sq. ft.	T = 0.42X	LN(T) = 0.35LN(X) + 2.36
Development (LUC 760)		88% in/12% out	13% in/87% out
General Office	Per 1,000 sq. ft.	T = 0.94X + 26.49	LN(T) = 0.95LN(X) + 0.36
(LUC 710)		86% in/14% out	16% in/84% out

Table 3.1. ITE Trip Generation Data by Land Use

T - Number of site-generated trips

Due to the nature of the proposed land uses and location of the proposed development, sitegenerated traffic is not expected to exhibit pass-by behavior. Site-generated traffic projections for the proposed development are presented in **Table 3.2**.

X - 1,000 square feet gross floor area

Table 3.2. Site-Generated Traffic Projections¹

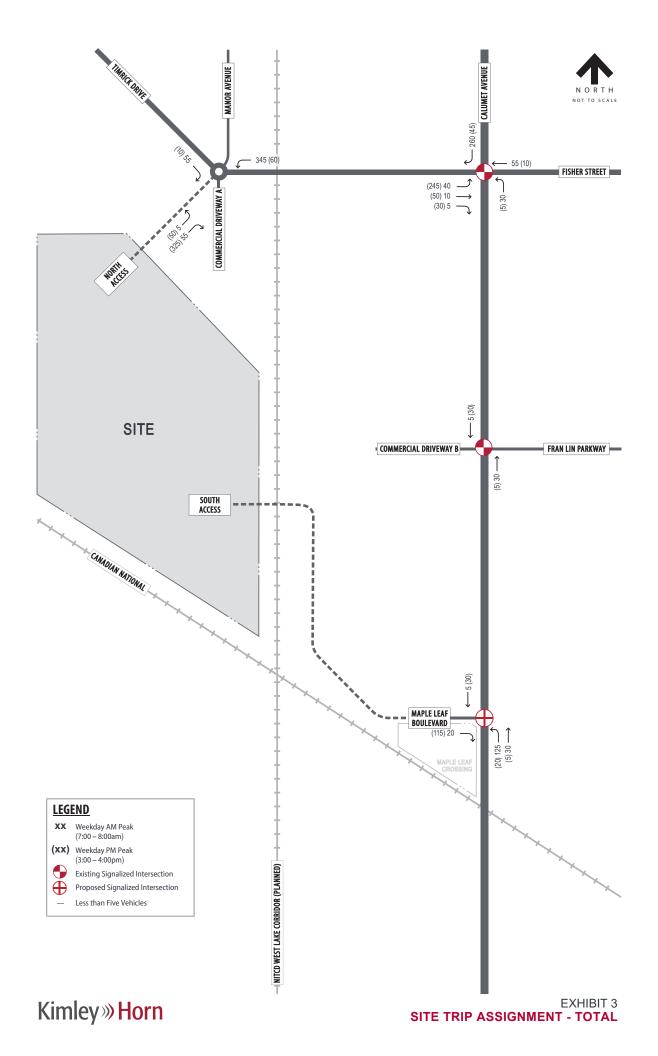
Land Use	Unit Da	Daily	AM Peak Hour			PM Peak Hour		
			In	Out	Total	In	Out	Total
General Office (LUC 710)	475,500 sq. ft.	4,810	410	65	475	80	420	500
Research & Development (LUC 760)	305,000 sq. ft.	3,320	115	15	130	10	70	80
Total Site-Generated Trips		8,130	525	80	605	90	490	580

¹In/Out volumes are rounded to the nearest multiple of five. For rounding purposes, total volumes are a sum of in and out.

3.3 Directional Distribution

The estimated distribution of site-generated traffic on the surrounding roadway network as it approaches and departs the site is a function of several variables, such as the nature of surrounding land uses, prevailing traffic volumes/patterns, and the ease with which motorists can travel various sections of the area roadway network. The anticipated directional distribution of site-generated trips is presented in **Table 3.3**.

Table 3.3. Directional Distribution Percentages


Traveling to/from	Site-Generated Trips
North via Calumet Avenue	30%
North via Timrick Drive	10%
South via Calumet Avenue	50%
East via Fisher Street	10%
Total	100%

3.4. Site Traffic Assignment

The site traffic assignment, representing traffic volumes associated with the proposed redevelopment at the study intersections, is a function of the estimated trip generation (Table 3.2) and the directional distribution (Table 3.3). The total trip assignment for the proposed development is provided in **Exhibit 3**.

3.5 Future Traffic Projections

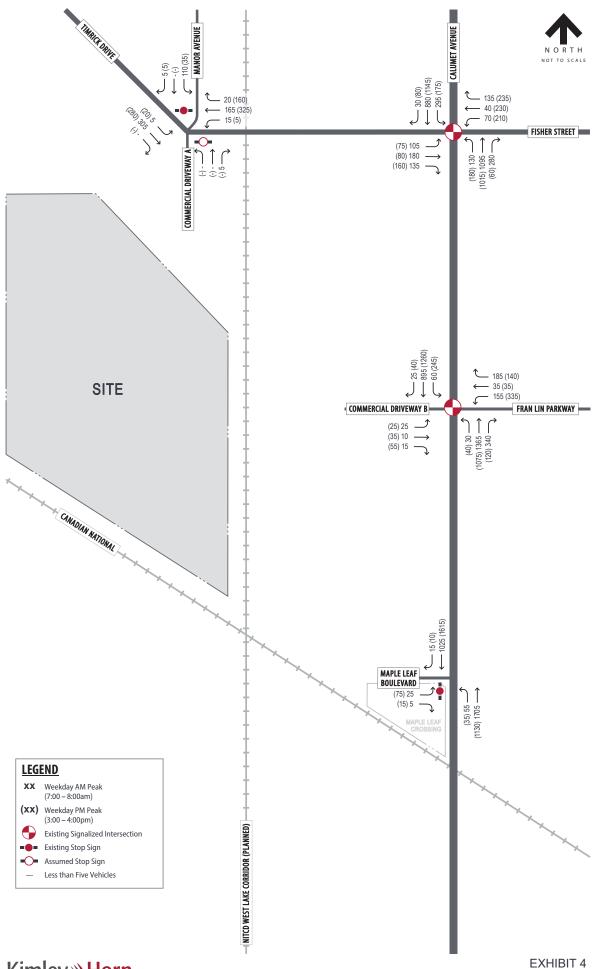
The proposed development is expected to be constructed and occupied by Year 2023. Consistent with INDOT *Applicant's Guide to Traffic Impact Studies (May 2015)*, the future year analysis reflects the anticipated completion date of the proposed development, assuming full buildout and occupancy. Based on information obtained from Saxon Partners, LLC, the proposed development is assumed to be completed and occupied by Year 2023.

Background Traffic

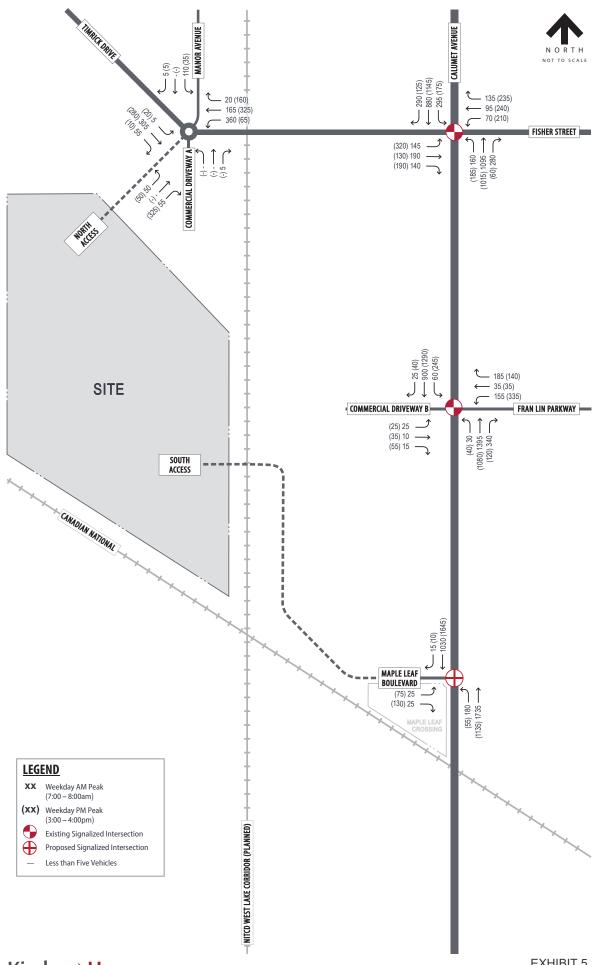
Background traffic was assumed to be comprised of two main parts: overall background traffic growth (applied in the form of an annual growth rate) and development-specific traffic projections. In order to estimate overall background traffic growth, historical traffic count data was obtained from the INDOT Traffic Count Database System (TCDS). Based traffic count data from 2015 to 2019 for Calumet Avenue (Location ID 45X221), Fisher Street (Location ID 45W226), and Timrick Drive (Location ID 45W241), a negative annual growth rate was calculated for each roadway segment. However, for purposes of a conservative analysis, and consistent with INDOT guidelines, a 0.50 percent annual growth rate was assumed. This annual growth rate was applied to existing traffic estimates (Exhibit 2) through Year 2023 in order to estimate overall background traffic growth.

In addition to Year 2023 background traffic, trips estimated for the Maple Leaf Crossing development were added to the roadway network based on the trip generation and assignment presented in the *Technical Memorandum Maple Leaf Crossing Traffic and Parking Study (dated June 2020)*, prepared by Ciorba Group. A summary of the estimated trip generation and assignment for Maple Leaf Crossing is included in the appendix. The Year 2023 background traffic volumes are presented in **Exhibit 4**.

Future (2023) Build Traffic Projections


Future (2023) Build traffic projections represent the sum of site-generated traffic (Exhibit 3) and background traffic projections (Exhibit 4). Future (2023) Build traffic projections are depicted in **Exhibit 5**.

Future Geometry


For the analysis of future traffic conditions, turn lane warrants were evaluated for the study intersections using guidelines in Chapter 46 of the INDOT *Indiana Design Manual (IDM)*. Dedicated left-turn lanes are currently provided along Calumet Avenue at Fisher Street and Fran Lin Parkway. At the intersection of Calumet Avenue/Maple Leaf Boulevard, a TWLTL is currently provided. Based on current geometry, left-turn lane warrants were not conducted for the study intersections.

Based on the projected traffic volumes and results of the capacity analysis, dual left-turn lanes are recommended on the west leg of Fisher Street at Calumet Avenue. Dual left-turn lanes are also recommended on the east leg to mirror the west leg and accommodate the projected traffic volume. With the dual left-turn lanes, the existing permitted/protected left-turn signal phase should be modified to reflect a protected-only left-turn phase. For the analysis of future conditions with the dual left-turn lanes, the signal timing splits were optimized.

Right-turn warrants were reviewed for the signalized intersections of Calumet Avenue/Fisher Street and Calumet Avenue/Fran Lin Parkway. According to the INDOT *IDM*, for signalized intersections, a right-turn lane may be warranted where a capacity analysis determines the turn lane is needed to meet the level-of-service criteria; for uniformity of intersection design along a corridor; or where significant conflicts (e.g., accidents, sight distance, etc.) are noted. Based on this criteria, right-turn lanes are recommended on the east and west legs of Fisher Street at its intersection with Calumet

Kimley » Horn

Kimley » Horn

Avenue. According to guidelines outlined in Chapter 46 of the INDOT *IDM*, on the east leg the rightturn lane should provide 150 feet of storage with a 100-foot taper. Based on the projected 95th percentile queues, the turn lane on the west leg should provide 150 feet of storage with a 100-foot taper.

The projected traffic volumes on Calumet Avenue at Maple Leaf Boulevard do not meet the INDOT minimum criteria for a southbound right-turn lane; and therefore, the turn lane was not included in the analysis of future conditions.

Signal Warrant Analysis

In addition to the turn lane warrants, a signal warrant analysis was performed according to criteria set by the *Indiana Manual for Uniform Traffic Control Devices* (IMUTCD) (2011) for future traffic volumes at the intersection of Calumet Avenue/Maple Leaf Boulevard.

To perform the signal warrant analysis,14-hour counts were obtained from StreetLight Data and calibrated using the methodology described under *Section 2.3 Data Collection*. A 14-hour period was assumed based on the nature of the proposed uses; the selected time period captures both the morning and evening commute periods. In order to estimate future traffic volumes, background traffic growth was applied at an annual rate of 0.5 percent as described under *Section 3.5 Background Traffic Projections*. Maple Leaf Crossing traffic was also added using the same methodology applied to estimate 14-hour traffic for the proposed development (see below). Site-generated traffic was added to the background traffic volumes in order to develop the Future (2023) Build traffic projections.

In order to obtain 14-hour site-generated traffic projections, hourly trip generation data from Appendix A of the ITE *Trip Generation Manual, 10th Edition* was applied to the daily trips presented in Table 3.2. For purposes of the analysis, the peak hour directional distribution percentages were applied to the 14-hour trip generation estimate. These volumes were compared to the IMUTCD criteria for Warrant 1 (Eight-Hour Vehicular Volume), which are summarized in **Table 3.4**. Warrant 2 (Four-Hour Vehicular Volume) and Warrant 3 (Peak-Hour Vehicular Volume) exhibits are presented in the appendix.

KimleyHorn

	Major Street Volume (sum of both approaches)			Minor Street Volume (high volume approach)		Warrant 1A Criteria		Warrant 1B Criteria		Results	
Hour	Northbound	Southbound	Total	Eastbound	High Volume*	Major > 600	Minor > 150	Major > 900	Minor > 75	Warrant 1A	Warrant 1B
6:00 AM	1163	567	1730	19	19	Yes	No	Yes	No	No	No
7:00 AM	4016	1010	5026	38	38	Yes	No	Yes	No	No	No
8:00 AM	2431	999	3430	50	50	Yes	No	Yes	No	No	No
9:00 AM	2027	824	2851	44	44	Yes	No	Yes	No	No	No
10:00 AM	2098	1013	3111	45	45	Yes	No	Yes	No	No	No
11:00 AM	2178	934	3112	55	55	Yes	No	Yes	No	No	No
12:00 PM	2166	1033	3199	262	262	Yes	Yes	Yes	Yes	Yes	Yes
1:00 PM	2152	1089	3240	207	207	Yes	Yes	Yes	Yes	Yes	Yes
2:00 PM	2372	1136	3507	185	185	Yes	Yes	Yes	Yes	Yes	Yes
3:00 PM	2329	1744	4072	188	188	Yes	Yes	Yes	Yes	Yes	Yes
4:00 PM	2575	1546	4122	237	237	Yes	Yes	Yes	Yes	Yes	Yes
5:00 PM	2743	1567	4310	258	258	Yes	Yes	Yes	Yes	Yes	Yes
6:00 PM	2537	1370	3906	114	114	Yes	No	Yes	Yes	No	Yes
7:00 PM	2002	1120	3122	86	86	Yes	No	Yes	Yes	No	Yes
	Total Hours Signal Warrant Met			14	6	14	8	No	Yes		

As shown in Table 3.4, based on the results of Warrant 1 (Eight-Hour Vehicular Volume), a signal is warranted under Warrant 1B. Additionally, as shown in the figures in the appendix, a signal is warranted under Warrant 2 (Four-Hour Vehicular Volume) and Warrant 3 (Peak-Hour Vehicular Volume). Therefore, a traffic signal was assumed for the intersection of Calumet Avenue/Maple Leaf Boulevard under the Future (2023) Build condition. A cycle length of 90 seconds was assumed for consistency with other signals on the Calumet Avenue corridor. The splits were optimized for purposes of the analysis.

Based on the turn lane improvements and signal recommended for the intersection of Calumet Avenue/Maple Leaf Boulevard, the capacity results for the Future (2023) Build condition are provided in **Table 3.5**. Consistent with existing conditions, the results are based on Synchro's HCM 6th Edition reports. Copies of the capacity analysis reports are provided in the appendix.

Table 3.5. Future (2023) Build Levels of Service

	AM Pea	ak Hour	PM Peak	PM Peak Hour		
Intersection	Delay (s/veh)	LOS	Delay (s/veh)	LOS		
Fisher Street / Timrick Drive / Manor Avenue / Commercial Driveway A / North Access)					
Eastbound	12	В	6	А		
Westbound	7	А	8	А		
Northbound	5	А	6	А		
Northeast (North Access)	5	А	9	А		
Southbound	7	А	5	А		
Overall	8	А	8	А		
Calumet Avenue / Fisher Street	*					
Eastbound	38	D	40	D		
Westbound	39	D	42	D		
Northbound	29	С	25	С		
Southbound	21	С	32	С		
Intersection	28	С	33	С		
Calumet Avenue / Fran Lin Parkway / Commercial Driveway B	*					
Eastbound	33	С	36	D		
Westbound	33	С	54	D1		
Northbound	25	С	36	D		
Southbound	11	В	23	С		
Intersection	22	С	32	С		
Calumet Avenue / Maple Leaf Boulevard	*					
Eastbound	28	С	37	D		
Northbound	3	А	4	А		
Southbound	2	А	6	А		
Intersection	3	А	7	А		

¹Left-turn operates at LOS E

With the addition of background traffic, site-generated trips, and the recommended improvements, the study intersections are expected to operate with acceptable delay and queues. The signalized intersections are projected to operate at an overall LOS C or better during each peak hour.

The intersection of Calumet Avenue/Fisher Street is projected to operate at LOS C during both peak hours. The projected 95th percentile queues would be accommodated within the existing and proposed storage with one exception. According to the results of the capacity analysis, the 95th percentile queue projected for the southbound left-turn movement would continue to exceed the storage lane, consistent with the existing conditions analysis.

At the signalized intersection of Calumet Avenue/Fran Lin Parkway/Commercial Driveway B, the westbound left-turn movement is projected to operate at LOS E. The projected delay is generally

consistent with existing conditions. The proposed development is not expected to materially impact operations at this intersection.

With installation of a roundabout at Fisher Street/Timrick Drive/Manor Avenue/Commercial Driveway A/North Access, delays and queues would be minimal. Overall, the intersection is projected to operate at LOS A during each peak hour.

The future signalized intersection of Calumet Avenue/Maple Leaf Boulevard is projected to operate at an overall LOS A during each peak hour. The eastbound approach is projected to operate at LOS C during the morning peak hour and LOS D during the evening peak hour. The 95th percentile queues estimated for the eastbound left- and right-turn movements are approximately 75 feet (3 vehicles) and 125 feet (5 vehicles) during the evening peak hour; limited queues are anticipated during the morning peak hour. The 95th percentile queue projected for the northbound left-turn movement is approximately 25 feet (1 vehicle) or less during both peak hours.

4. RECOMMENDATIONS & CONCLUSION

Based on Kimley-Horn's review of the proposed site plan and evaluation of existing and future traffic conditions, the study intersections are projected to adequately accommodate the proposed redevelopment with the implementation of the following improvements:

- Improve the existing northwest-southeast roadway along the west side of the Pepsi facility to the Town of Munster public road standards.
- Provide an underpass at the Northern Indiana Transit Commuter District's (NITCD) West Lake Corridor rail alignment (South Access) in order to facilitate secondary access to the proposed development.
- Install a single-lane roundabout at the intersection of Fisher Street/Timrick Drive/Manor Avenue/Commercial Driveway A/North Access in order to facilitate access to the five-leg intersection.
- Install dual left-turn lanes on the east and west legs of Fisher Street at Calumet Avenue. The existing permitted/protected left-turn phase should be modified to reflect a protected left-turn phase on both legs of Fisher Street.
- Install dedicated right-turn lanes on the east and west legs of the intersection of Calumet Avenue/Fisher Street. According to the INDOT *IDM*, the turn lane on the east leg should provide 150 feet of storage and a 100-foot taper. Based on the projected 95th percentile queues, the turn lane on the west leg should provide 150 feet of storage with a 100-foot taper.
- Install a new traffic signal at the intersection of Calumet Avenue/Maple Leaf Boulevard per INDOT and Town of Munster requirements.

Regardless of the final configuration of the intersection geometrics, several additional items should be taken into consideration when preparing site and roadway improvement plans for the subject development. As the site design progresses, care should be taken with landscaping, signage, and monumentation at the site access locations to ensure that adequate horizontal sight distance is maintained. If alterations to the site plan or land use should occur, changes to the analysis provided within this traffic impact study may be needed.

Kimley **»Horn**

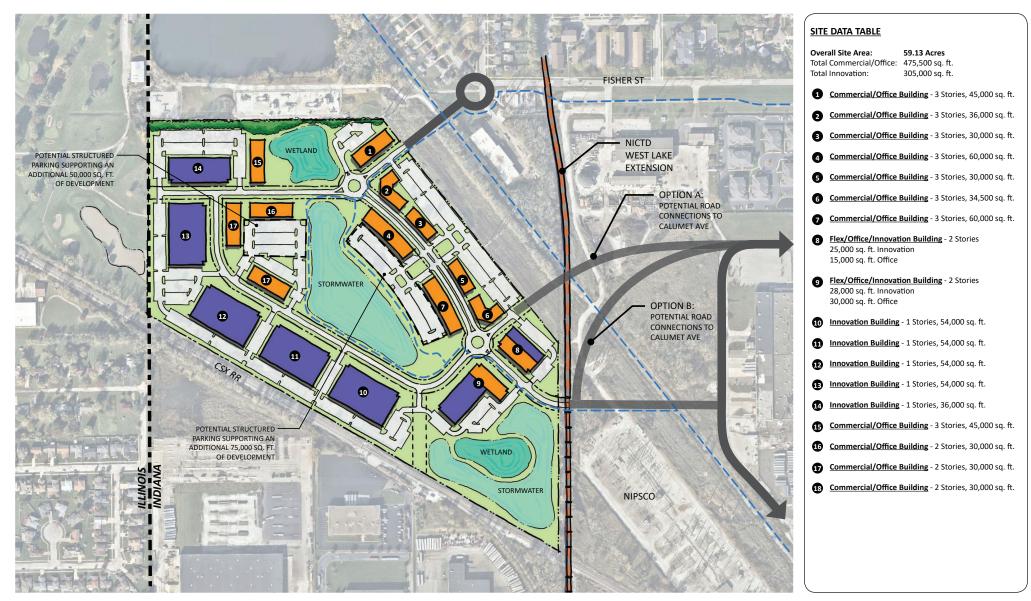
APPENDIX

Conceptual Site Plan

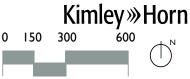
Data from the ITE *Trip Generation Manual*, 10th Edition

Maple Leaf Crossing Trip Assignment

Existing (2020) Capacity Reports


Future (2023) Build Capacity Reports

Signal Warrant Analysis


StreetLight Data

Kimley **Whorn**

CONCEPTUAL SITE PLAN

SAXON CONCEPTUAL SITE PLAN | MUNSTER, IN

JULY 2, 2020

Kimley **»Horn**

DATA FROM THE ITE TRIP GENERATION, 10TH EDITION

Land Use: 710 General Office Building

Description

A general office building houses multiple tenants; it is a location where affairs of businesses, commercial or industrial organizations, or professional persons or firms are conducted. An office building or buildings may contain a mixture of tenants including professional services, insurance companies, investment brokers, and tenant services, such as a bank or savings and loan institution, a restaurant, or cafeteria and service retail facilities. A general office building with a gross floor area of 5,000 square feet or less is classified as a small office building (Land Use 712). Corporate headquarters building (Land Use 714), single tenant office building (Land Use 715), office park (Land Use 750), research and development center (Land Use 760), and business park (Land Use 770) are additional related uses.

If information is known about individual buildings, it is suggested that the general office building category be used rather than office parks when estimating trip generation for one or more office buildings in a single development. The office park category is more general and should be used when a breakdown of individual or different uses is not known. If the general office building category is used and if additional buildings, such as banks, restaurants, or retail stores are included in the development, the development should be treated as a multiuse project. On the other hand, if the office park category is used, internal trips are already reflected in the data and do not need to be considered.

When the buildings are interrelated (defined by shared parking facilities or the ability to easily walk between buildings) or house one tenant, it is suggested that the total area or employment of all the buildings be used for calculating the trip generation. When the individual buildings are isolated and not related to one another, it is suggested that trip generation be calculated for each building separately and then summed.

Additional Data

The average building occupancy varied considerably within the studies for which occupancy data were provided. The reported occupied gross floor area was 88 for general urban/suburban sites and 96 percent for the center city core and dense multi-use urban sites.

Time-of-day distribution data for this land use for a weekday, Saturday, and Sunday are presented in Appendix A. For the 16 general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:30 and 8:30 a.m. and 4:30 and 5:30 p.m., respectively.

For the three general urban/suburban sites with person trip data, the overall highest volumes during the AM and PM on a weekday were counted between 8:45 and 9:45 a.m. and 12:45 and 1:45 p.m., respectively. For the three dense multi-use urban sites with person trip data, the overall highest volumes during the AM and PM on a weekday were counted between 8:30 and 9:30 a.m. and 4:45 and 5:45 p.m., respectively. For the four center city core sites with person trip data, the overall highest volumes during the AM and PM on a weekday were counted between 9:00 and 10:00 a.m. and 12:45 and 1:45 p.m., respectively.

The average numbers of person trips per vehicle trip at the eight center city core sites at which both person trip and vehicle trip data were collected were as follows:

- 2.76 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- 2.90 during Weekday, AM Peak Hour of Generator
- 2.91 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- 3.02 during Weekday, PM Peak Hour of Generator

The average numbers of person trips per vehicle trip at the 18 dense multi-use urban sites at which both person trip and vehicle trip data were collected were as follows:

- 1.47 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- 1.47 during Weekday, AM Peak Hour of Generator
- 1.46 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- 1.53 during Weekday, PM Peak Hour of Generator

The average numbers of person trips per vehicle trip at the 23 general urban/suburban sites at which both person trip and vehicle trip data were collected were as follows:

- 1.30 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- 1.34 during Weekday, AM Peak Hour of Generator
- 1.32 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- 1.41 during Weekday, PM Peak Hour of Generator

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), California, Colorado, Connecticut, Georgia, Illinois, Indiana, Kansas, Kentucky, Maine, Maryland, Michigan, Minnesota, Missouri, Montana, New Hampshire, New Jersey, New York, Pennsylvania, Texas, Utah, Virginia, and Washington.

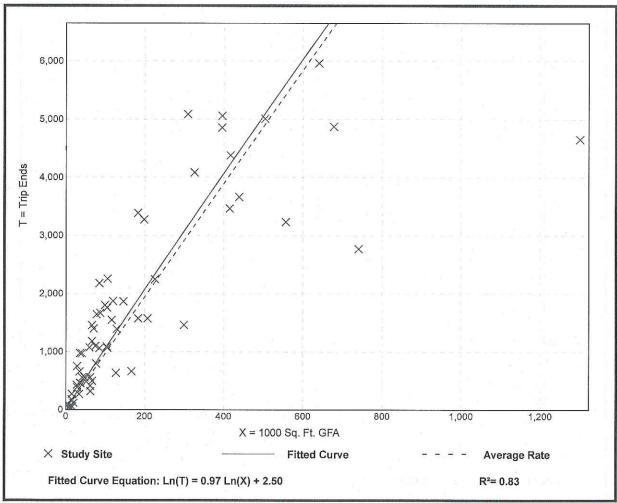
Source Numbers

2

161, 175, 183, 184, 185, 207, 212, 217, 247, 253, 257, 260, 262, 273, 279, 297, 298, 300, 301, 302, 303, 304, 321, 322, 323, 324, 327, 404, 407, 408, 418, 419, 423, 562, 734, 850, 859, 862, 867, 869, 883, 884, 890, 891, 904, 940, 944, 946, 964, 965, 972

For the press general graduation made and with paramiting talls. The event high talk volutions duting the M and 2M and 2M as a workder verse counted tensions 8 do and 9:45 arm and 12:45 and 1 Map m. respectively France tension at the mitting of uttrained an article with parado the duta, the overall high age volumen duting for AM and 2M on a workday were counted between 8:30 and 8:20 mm and 4:45 and 5.45 p.m., respectively. Partne film content with rest work admited between 9:30 and 10:00 and Mitting for the dutage for AM and 2M one weaks were counted between 9:00 and 10:00 and Mitting of the dutage for AM and 2M one weaks were admited between 9:00 and 10:00 and

te=


(710)

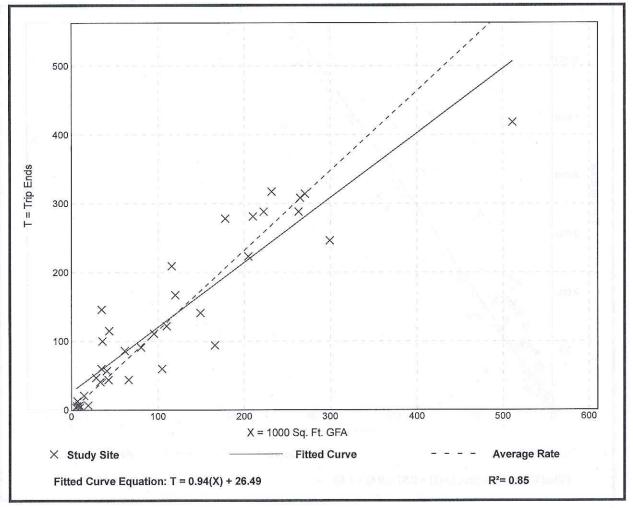
Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday

Setting/Location:	General Urban/Suburban
Number of Studies:	66
1000 Sq. Ft. GFA:	
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
9.74	2.71 - 27.56	5.15

	fice Building 10)
Vehicle Trip Ends vs:	1000 Sq. Ft. GFA
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 7 and 9 a.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	35 endored to the limit l
1000 Sq. Ft. GFA:	117 12 14 p8 000
	86% entering, 14% exiting

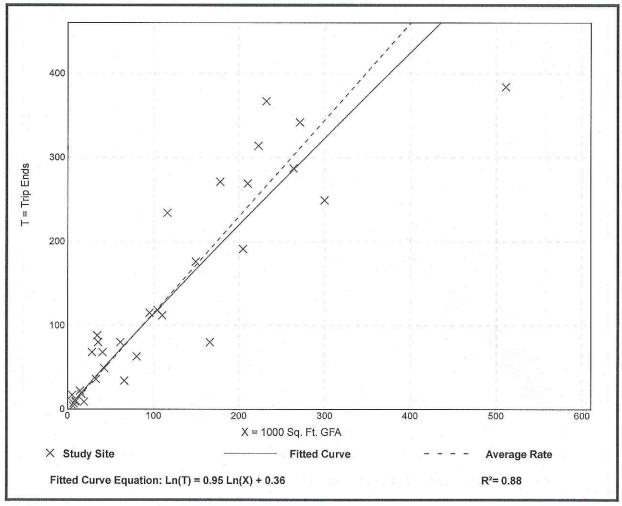

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.16	0.37 - 4.23	0.47

Data Plot and Equation

4

NUMBER OF BUILDING

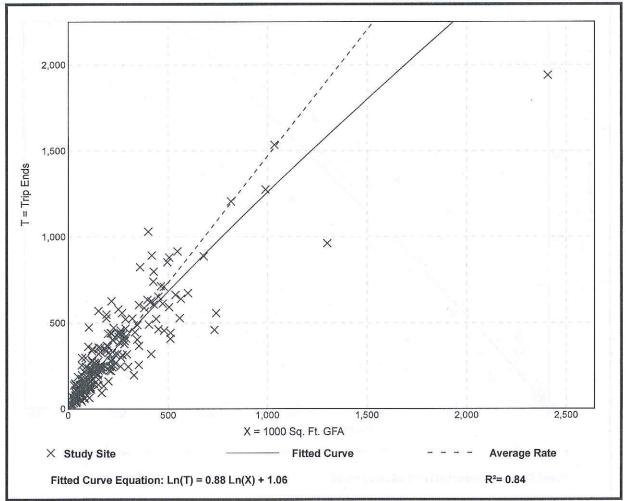


ite=

(7	fice Building 10)	-
Vehicle Trip Ends vs:	1000 Sq. Ft. GFA	
On a:	Weekday,	
	Peak Hour of Adjacent Street Traffic,	
	One Hour Between 4 and 6 p.m.	
Setting/Location:	General Urban/Suburban	
Number of Studies:	32	
1000 Sq. Ft. GFA:	114	
Directional Distribution:	16% entering, 84% exiting	

Vehicle Trip Generation per 1000 Sq. Ft. GFA

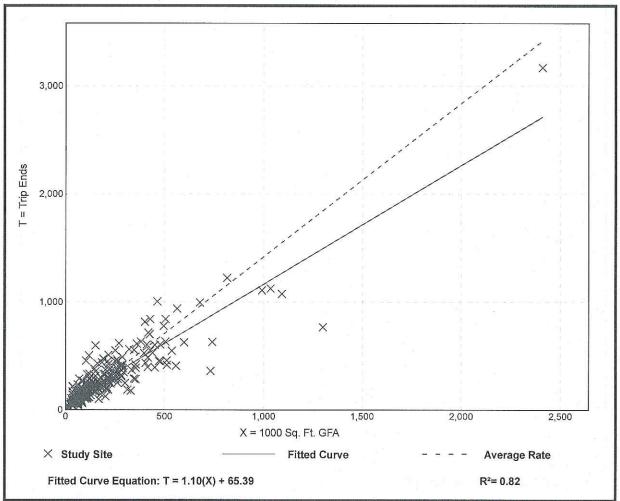
Average Rate	Range of Rates	Standard Deviation
1.15	0.47 - 3.23	0.42



General Office Building (710) Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday, AM Peak Hour of Generator Setting/Location: General Urban/Suburban Number of Studies: 228 1000 Sq. Ft. GFA: 209 Directional Distribution: 88% entering, 12% exiting

venicie	Trip Generation	per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.47	0.57 - 4.93	0.60



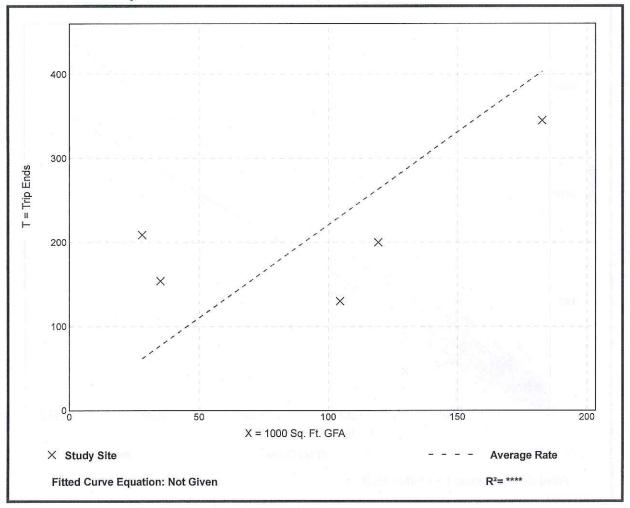
Trip Generation Manual 10th Edition • Volume 2: Data • Office (Land Uses 700-799)

=		fice Building	
	Vehicle Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, PM Peak Hour of Generator	
	Setting/Location:	General Urban/Suburban	
	Number of Studies:	243	
	1000 Sq. Ft. GFA:	205	
	Directional Distribution:	18% entering, 82% exiting	

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.42	0.49 - 6.20	0.61

General Office Building (710) Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Saturday Setting/Location: General Urban/Suburban Number of Studies: 5 1000 Sq. Ft. GFA: 94 Directional Distribution: 50% entering, 50% exiting


Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
2.21	1.24 - 7.46	1.70

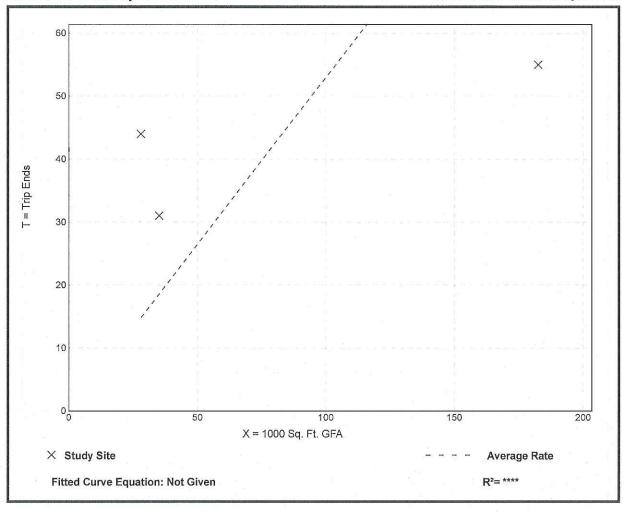
Data Plot and Equation

8

Caution – Small Sample Size

rte=

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Saturday, Peak Hour of Generator


Setting/Location:	General Urban/Suburban
Number of Studies:	3
1000 Sq. Ft. GFA:	82
Directional Distribution:	54% entering, 46% exiting

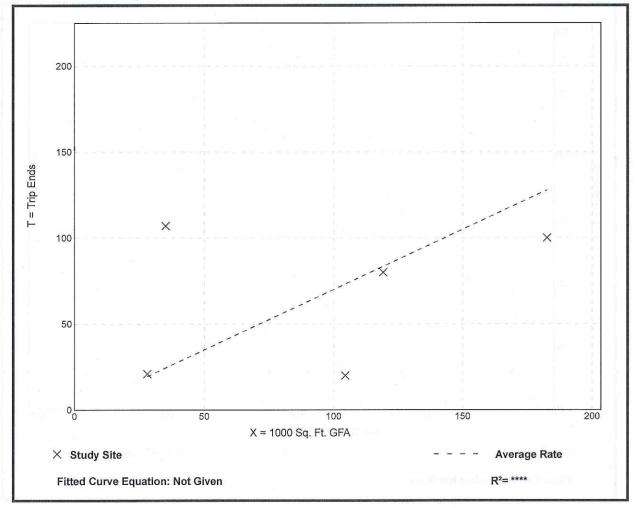
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.53	0.30 - 1.57	1.29

Data Plot and Equation

Caution - Small Sample Size

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Sunday


Setting/Location:	General Urban/Suburban
Number of Studies:	5 casion 62 to redeped
1000 Sq. Ft. GFA:	94
Directional Distribution:	50% entering, 50% exiting

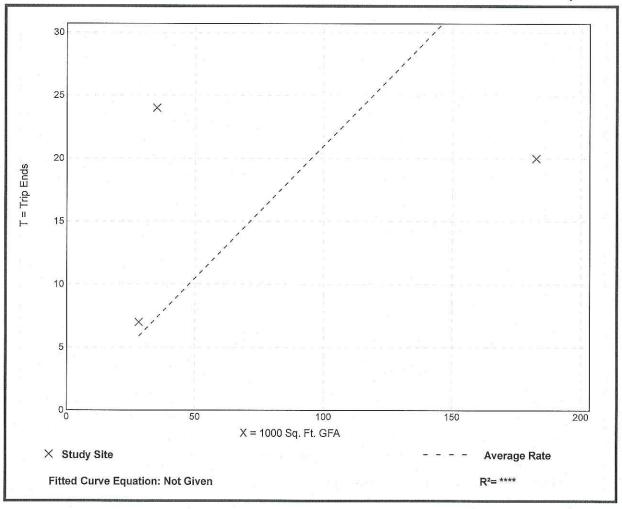
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.70	0.19 - 3.05	0.77

Data Plot and Equation

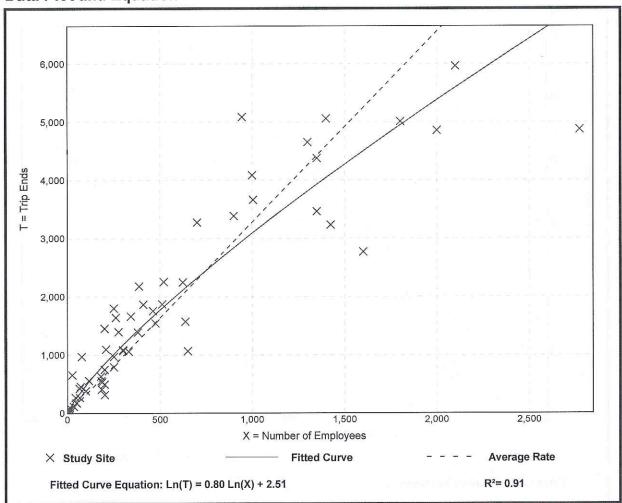
Caution - Small Sample Size

ite=


General Office Building (710) Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Sunday, Peak Hour of Generator Setting/Location: General Urban/Suburban Number of Studies: 3 1000 Sq. Ft. GFA: 82 Directional Distribution: 58% entering, 42% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

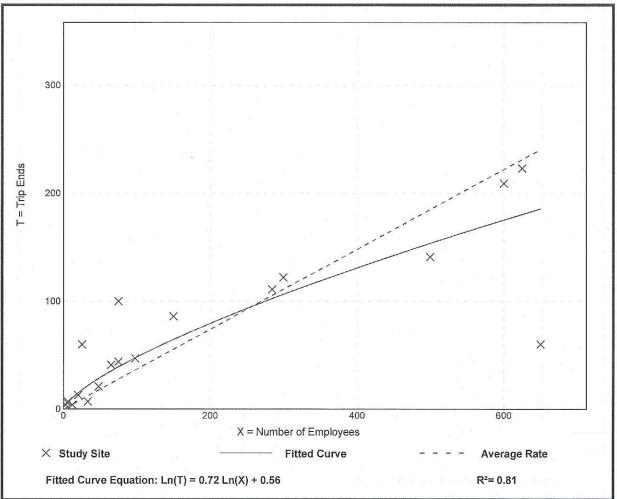
Average Rate	Range of Rates	Standard Deviation
0.21	0.11 - 0.68	0.52


Data Plot and Equation

Caution - Small Sample Size

Vehicle Trip Ends vs: On a:	
Setting/Location:	General Urban/Suburban
Number of Studies:	60
Avg. Num. of Employees:	528
Directional Distribution:	50% entering, 50% exiting

Average Rate	Range of Rates	Standard Deviation
3.28	1.59 - 26.24	1.44

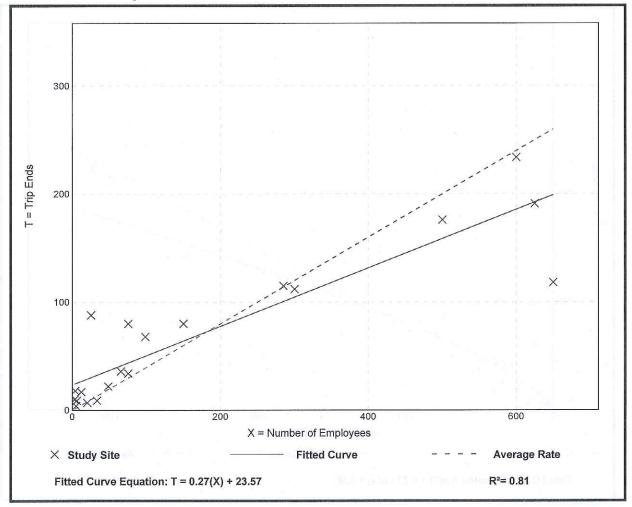

Data Plot and Equation

Trip Generation Manual 10th Edition • Volume 2: Data • Office (Land Uses 700-799) 12

	fice Building (10)
Vehicle Trip Ends vs:	Employees
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 7 and 9 a.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	19
Avg. Num. of Employees:	188
Directional Distribution:	83% entering, 17% exiting

Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.37	0.09 - 2.40	0.27

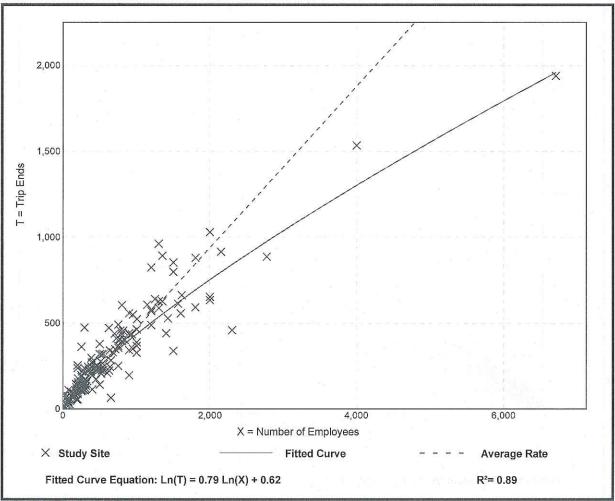

General Office Building (710) Vehicle Trip Ends vs: Employees On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. Setting/Location: General Urban/Suburban Number of Studies: 20 Avg. Num. of Employees: 179 Directional Distribution: 20% entering, 80% exiting

Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.40	0.18 - 4.50	0.36

Data Plot and Equation

nolizing bits to P

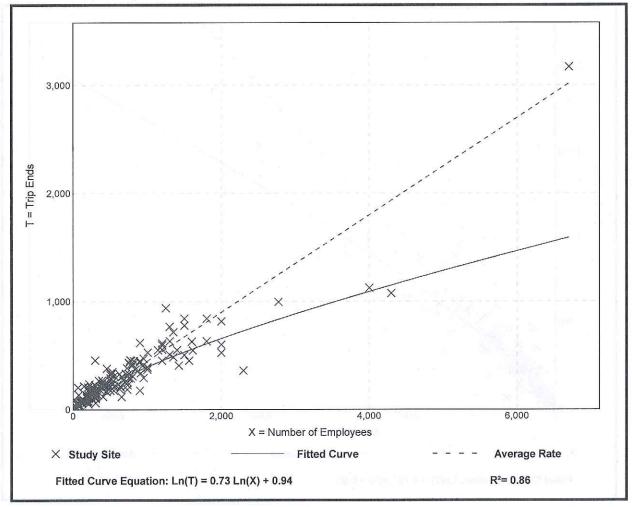


ite=

General Office Building (710) Vehicle Trip Ends vs: Employees On a: Weekday, AM Peak Hour of Generator Setting/Location: General Urban/Suburban Number of Studies: 165 Avg. Num. of Employees: 656 Directional Distribution: 88% entering, 12% exiting

Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.47	0.10 - 3.20	0.17



General Office Building (710) Vehicle Trip Ends vs: Employees On a: Weekday, PM Peak Hour of Generator Setting/Location: General Urban/Suburban Number of Studies: 175 Avg. Num. of Employees: 651 17% entering, 83% exiting

Vehicle Trip Generation per Employee

Data Plot and Equation

Date Plot and Equation

ite=

Vehicle Trip Ends vs: Employees On a: Saturday

Setting/Location:	General Urban/Suburban
Number of Studies:	4
Avg. Num. of Employees:	519
Directional Distribution:	50% entering, 50% exiting

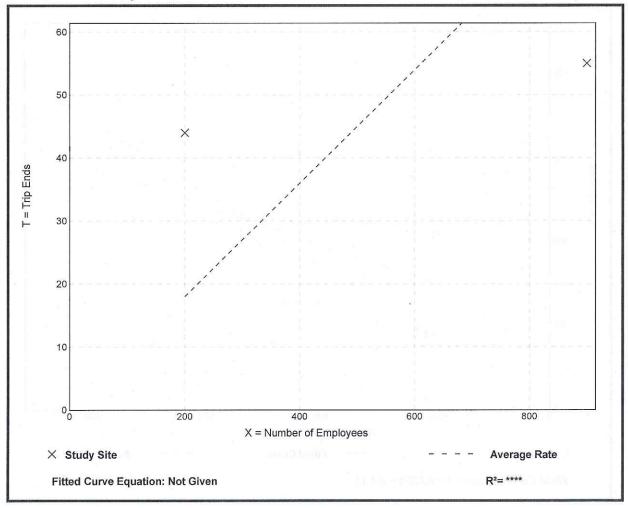
Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.43	0.28 - 1.05	0.24

Data Plot and Equation

Caution - Small Sample Size

Vehicle Trip Ends vs: Employees On a: Saturday, Peak Hour of Generator


Setting/Location:	General Urban/Suburban
Number of Studies:	2 performance of the participation of the
Avg. Num. of Employees:	550
Directional Distribution:	54% entering, 46% exiting

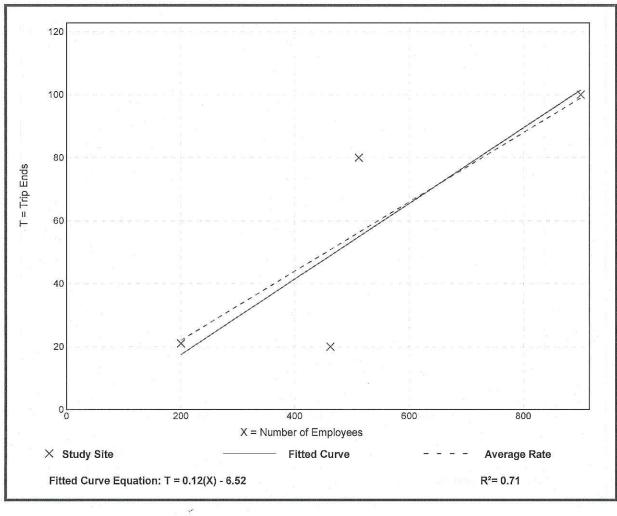
Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.09	0.06 - 0.22	*

Data Plot and Equation

Caution - Small Sample Size

ite=

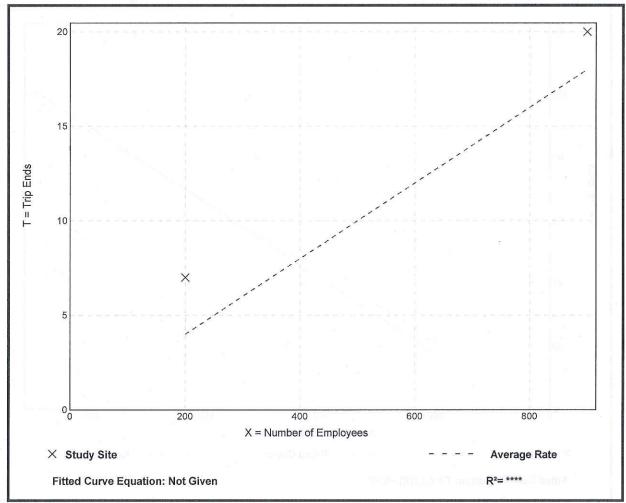

Vehicle Trip Ends vs: On a:	Employees Sunday	
Setting/Location:	General Urban/Suburban	
Number of Studies:	4	
Avg. Num. of Employees:	519	
Directional Distribution:	50% entering, 50% exiting	

Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.11	0.04 - 0.16	0.04

Data Plot and Equation

Caution - Small Sample Size

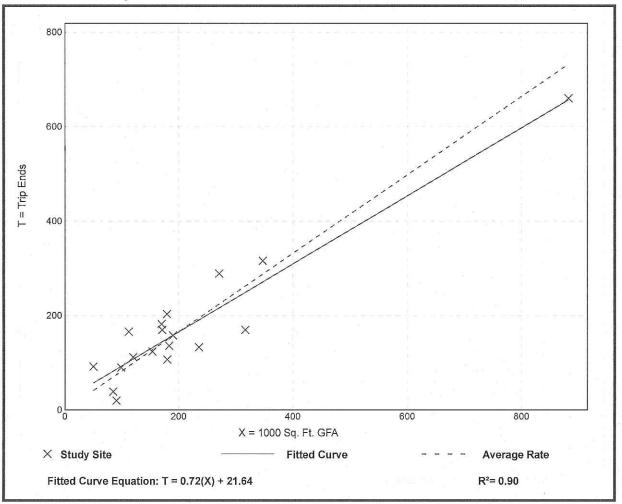

General Office Building (710) Vehicle Trip Ends vs: Employees On a: Sunday, Peak Hour of Generator Setting/Location: General Urban/Suburban Number of Studies: 2 Avg. Num. of Employees: 550 Directional Distribution: 58% entering, 42% exiting

Average Rate	Range of Rates	Standard Deviation
0.02	0.02 - 0.04	* 1.2

Data Plot and Equation

20

Caution - Small Sample Size



ite=

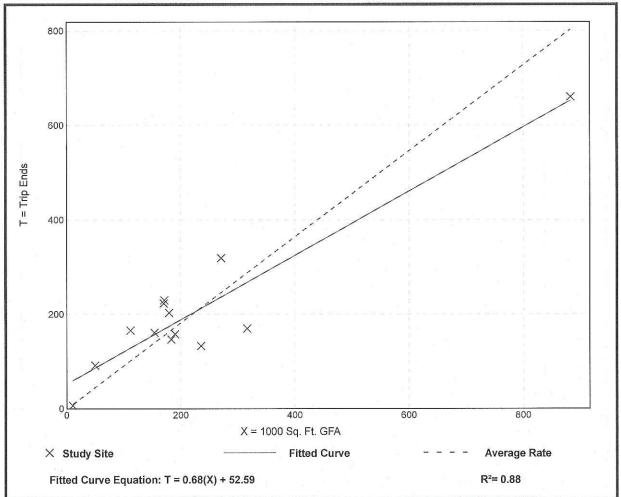
General Office Building (710)		
Vehicle Trip Ends vs:	1000 Sq. Ft. GFA	
On a:	Weekday,	
	Peak Hour of Adjacent Street Traffic,	
	One Hour Between 7 and 9 a.m.	
Setting/Location:	Dense Multi-Use Urban	
Number of Studies:	18	
1000 Sq. Ft. GFA:	213	
Directional Distribution:	86% entering, 14% exiting	

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.83	0.22 - 1.84	0.27

General Office Building (710)	
Vehicle Trip Ends vs:	1000 Sq. Ft. GFA
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 4 and 6 p.m.
Setting/Location:	Dense Multi-Use Urban
Number of Studies:	19
1000 Sq. Ft. GFA:	202
Directional Distribution:	17% entering, 83% exiting

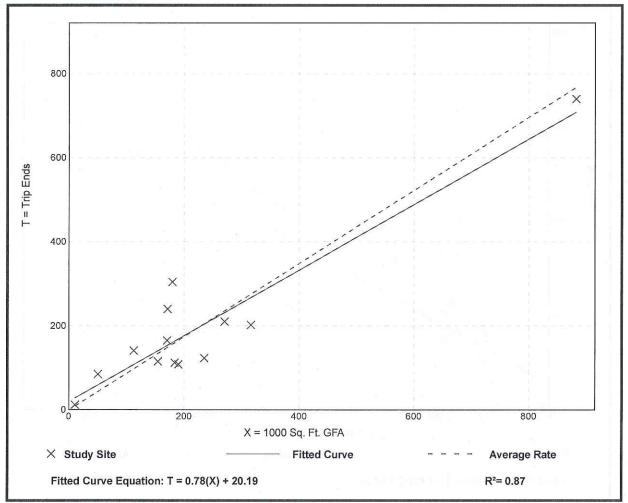
Vehicle Trip Generation per 1000 Sq. Ft. GFA


Average Rate	Range of Rates	Standard Deviation
0.87	0 39 - 1 70	0.33

Data Plot and Equation

800 600 T = Trip Ends X 400 × × 200 X X ×× 200 600 400 800 X = 1000 Sq. Ft. GFA imes Study Site **Fitted Curve** Average Rate Fitted Curve Equation: T = 0.83(X) + 7.99 R²= 0.86

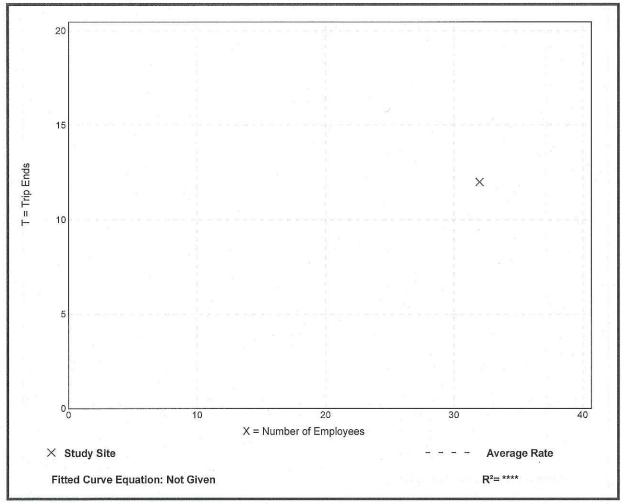
General Office Building (710) Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday, AM Peak Hour of Generator Setting/Location: Dense Multi-Use Urban Number of Studies: 13 1000 Sq. Ft. GFA: 1000 Sq. Ft. GFA: 225 Directional Distribution: 87% entering, 13% exiting


Average Rate	Range of Rates	Standard Deviation
0.91	0.54 - 1.84	0.32

General Office Building (710) Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday, PM Peak Hour of Generator Setting/Location: Dense Multi-Use Urban Number of Studies: 13 1000 Sq. Ft. GFA: 1000 Sq. Ft. GFA: 225 Directional Distribution: 19% entering, 81% exiting

Venicle The Generation per 1000 Sq. Ft. GFA			
	Average Rate	Range of Rates	Standard Deviation
	0.87	0.52 - 1.70	0.34

Data Plot and Equation

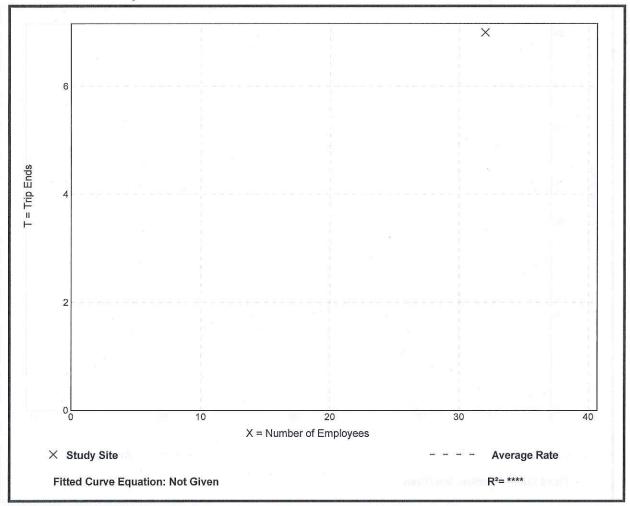

General Office Building
(710)Vehicle Trip Ends vs:EmployeesOn a:Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.Setting/Location:Dense Multi-Use UrbanNumber of Studies:1Avg. Num. of Employees:32Directional Distribution:25% entering, 75% exiting

Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.38	0.38 - 0.38	*

Data Plot and Equation

Caution – Small Sample Size

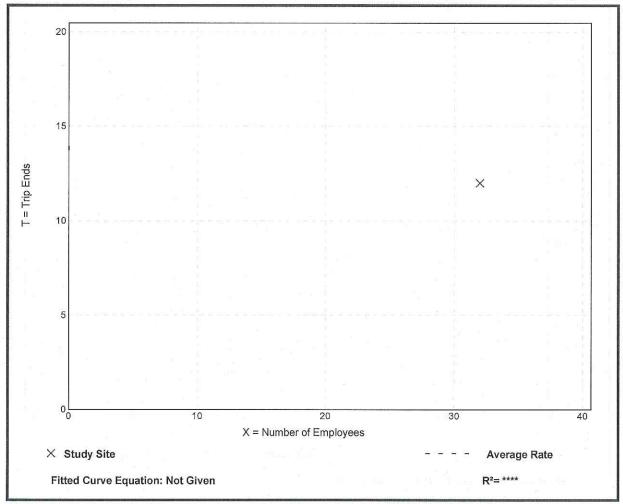


General Office Building (710) Vehicle Trip Ends vs: Employees On a: Weekday, AM Peak Hour of Generator Setting/Location: Dense Multi-Use Urban Number of Studies: 1 Avg. Num. of Employees: 32 Directional Distribution: 86% entering, 14% exiting

Average Rate	Range of Rates	Standard Deviation
0.22	0.22 0.22	*

Data Plot and Equation

Caution – Small Sample Size

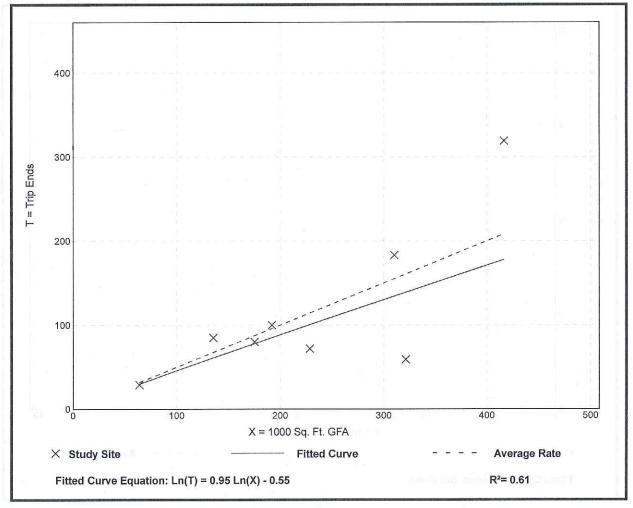

itez

70 5	General Office Building (710)						
	Vehicle Trip Ends vs: On a:	Employees Weekday,					
	and the second sec	PM Peak Hour of Generator					
	Setting/Location:	Dense Multi-Use Urban					
	Number of Studies:	n 1					
	Avg. Num. of Employees: Directional Distribution:	32 25% entering, 75% exiting					

Vehicle Trip Generation per Employee

Data Plot and Equation

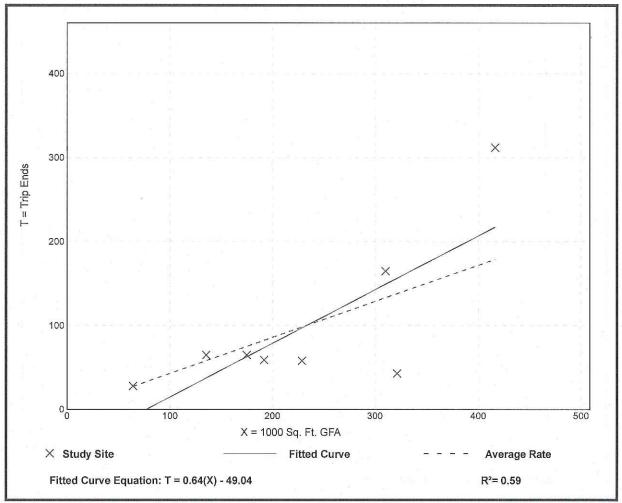
Caution – Small Sample Size


General Office Building (710) Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. Setting/Location: Center City Core Number of Studies: 8 1000 Sq. Ft. GFA: 230 Directional Distribution: Not Available

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.50	0.18 - 0.77	0.22

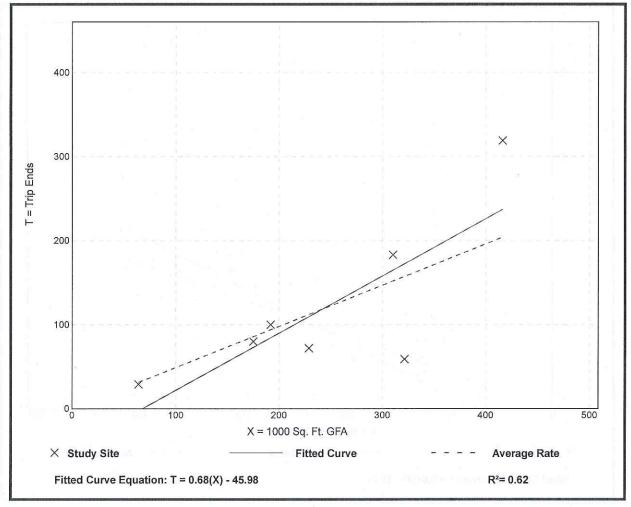
Date Plot and Equation



General Office Building (710) Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. Setting/Location: Center City Core Number of Studies: 8 1000 Sq. Ft. GFA: 230 Directional Distribution: Not Available

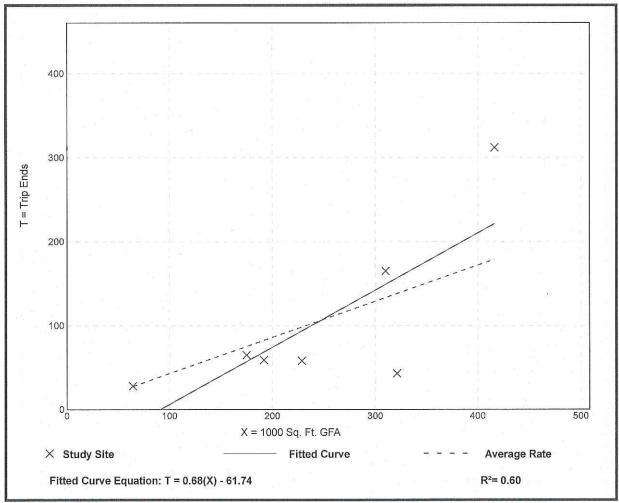
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.43	0.13 - 0.75	0.23



	fice Building 10)
Vehicle Trip Ends vs:	1000 Sq. Ft. GFA Weekday,
Setting/Location:	Center City Core
Number of Studies:	7 2010 0 0 0 0 0 0
1000 Sq. Ft. GFA:	244
Directional Distribution:	

	Average Rate	Range of Rates	Standard Deviation		
-	0.49	0.18 - 0.77	0.22		

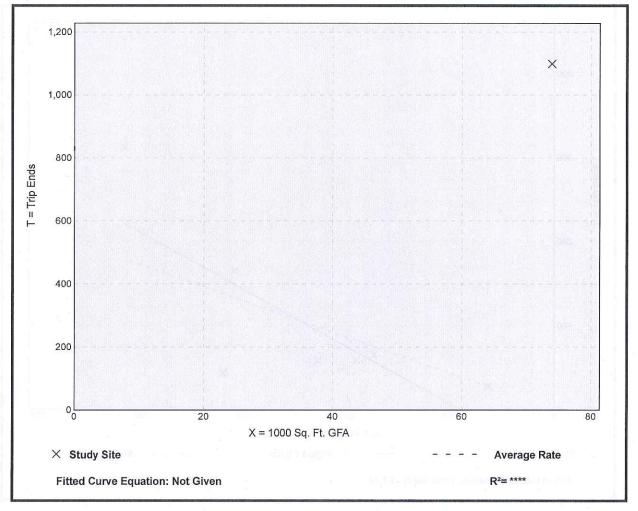

Data Pint and Eduction

ite=

General Office Building (710)				
	Vehicle Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, PM Peak Hour of Generator		
	Setting/Location: Number of Studies: 1000 Sq. Ft. GFA: Directional Distribution:	7 244		

Average Rate	Range of Rates	Standard Deviation
0.43	0 13 - 0 75	0.24

Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday

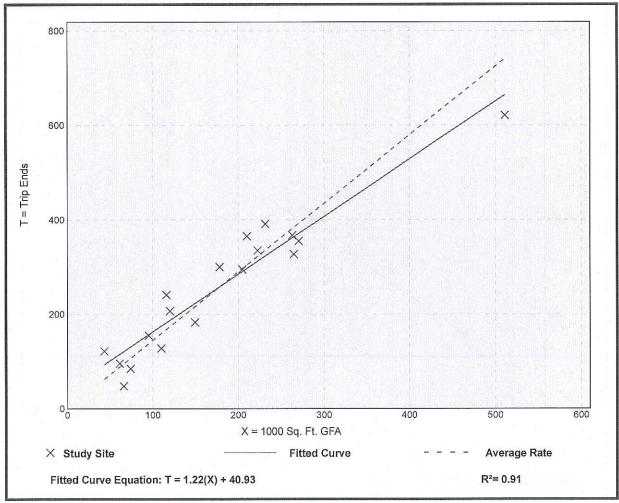

Setting/Location:	General Urban/Suburban
Number of Studies:	1 Computed Internation (M
1000 Sq. Ft. GFA:	74
Directional Distribution:	50% entering, 50% exiting

Person	Trip	Generation	per	1000	Sq. Ft.	GFA	
			The second				

Range of Rates	Standard Deviation
14.87 - 14.87	*

Data Plot and Equation

Caution - Small Sample Size

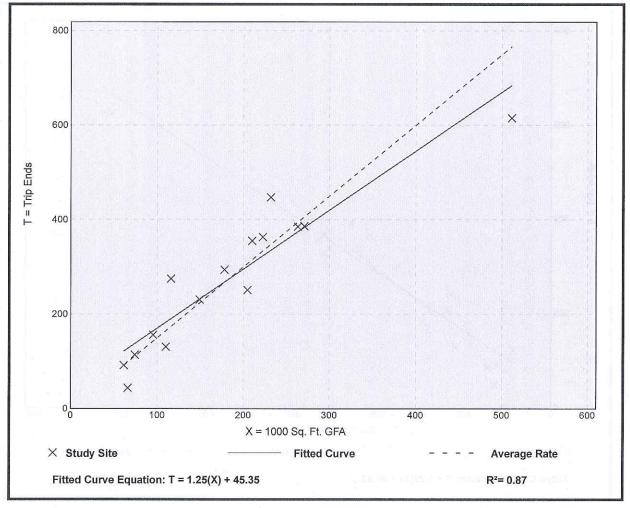


ite=

General Office Building (710)		
Person Trip Ends vs:	1000 Sq. Ft. GFA	
On a:	Weekday,	
	Peak Hour of Adjacent Street Traffic,	
	One Hour Between 7 and 9 a.m.	
Setting/Location:	General Urban/Suburban	
Number of Studies:	18	
1000 Sq. Ft. GFA:	177	
Directional Distribution:	87% entering, 13% exiting	

Person Trip Generation per 1000 Sq. Ft. GFA

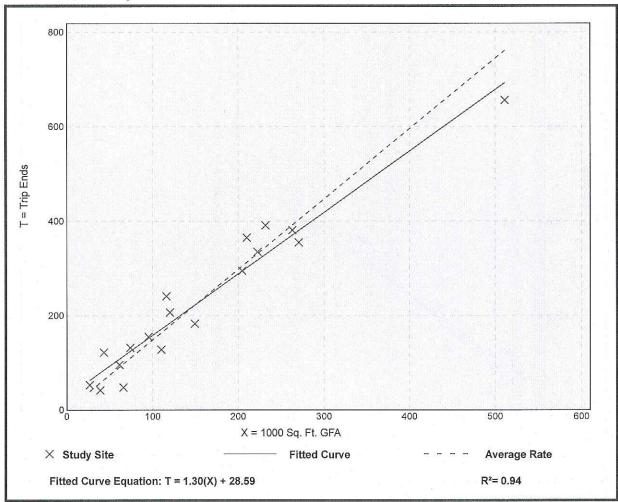
Average Rate	Range of Rates	Standard Deviation
1.45	0.73 - 2.82	0.31



General Office Building (710) Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. Setting/Location: General Urban/Suburban Number of Studies: 15 1000 Sq. Ft. GFA: 184 Directional Distribution: 15% entering, 85% exiting

Average Rate	Range of Rates	Standard Deviation
1.50	0.67 0.27	0.22

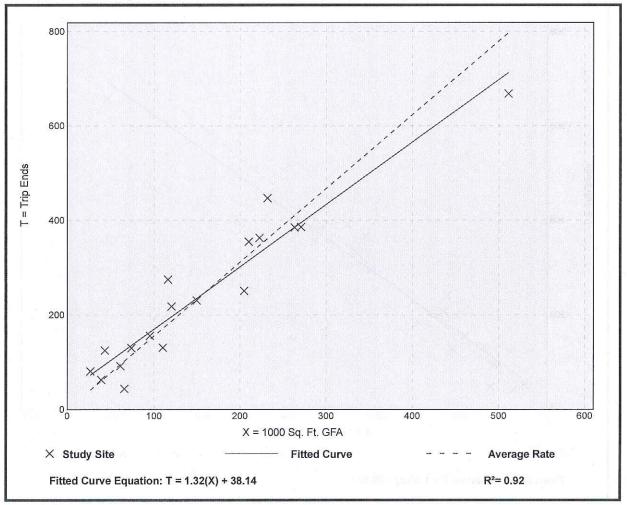
noileares ban tels istri


General Office Building (710) Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday, AM Peak Hour of Generator Setting/Location: General Urban/Suburban Number of Studies: 18 1000 Sq. Ft. GFA: 156 Directional Distribution: 85% entering, 15% exiting Person Trip Generation per 1000 Sq. Ft. GFA Average Rate Range of Rates Standard Deviation

0.73 - 2.82

0.31

Data Plot and Equation


1.49

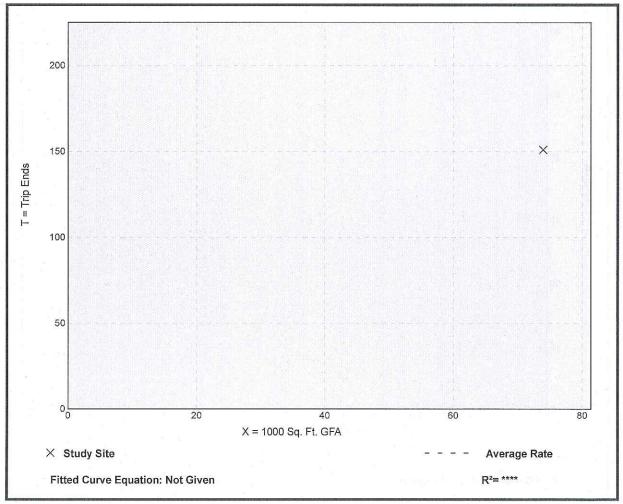
General Of (7	fice Building 10)
Person Trip Ends vs:	1000 Sq. Ft. GFA Weekday,
	PM Peak Hour of Generator
Setting/Location:	General Urban/Suburban
Number of Studies:	18 and and the restriction of the
1000 Sq. Ft. GFA:	156
Directional Distribution:	20% entering, 80% exiting

Average Rate	Range of Rates	Standard Deviation
1.56	0.67 - 3.06	0.38

Data Plot and Equation

itez

Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Saturday

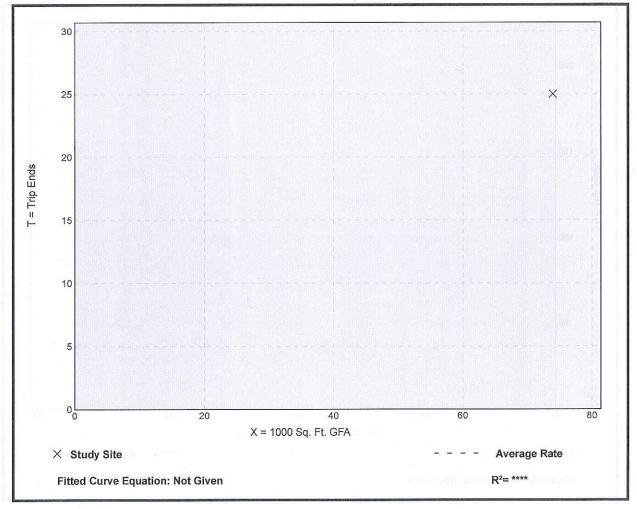

Setting/Location: General Urban/Suburban

Number of Studies: 1 1000 Sq. Ft. GFA: 74 Directional Distribution: 50% entering, 50% exiting

Person Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
2.04	2.04 - 2.04	*

Data Plot and Equation


Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Saturday, Peak Hour of Generator

Setting/Location:	General Urban/Suburban
Number of Studies:	fumber of Skides, 1
1000 Sq. Ft. GFA:	74
Directional Distribution:	48% entering, 52% exiting

on Trip Generation p	per 1000 Sq. Ft. GFA	teu inslichynisia oliffinia
Average Rate	Range of Rates	Standard Deviation
0.34	0.34 - 0.34	*

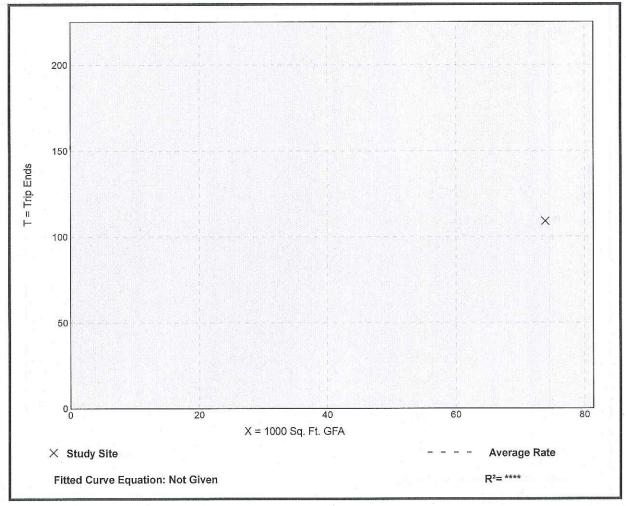
Data Plot and Equation

Caution – Small Sample Size

ite=

Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Sunday

Setting/Location: General Urban/Suburban

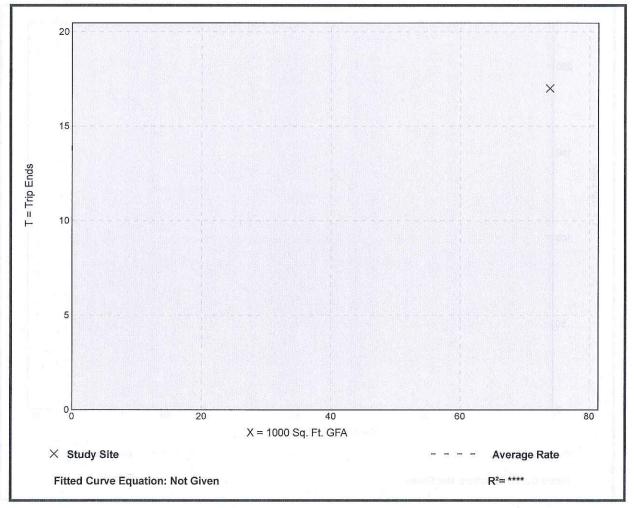

Number of Studies: 1 1000 Sq. Ft. GFA: 74 Directional Distribution: 50% entering, 50% exiting

Person Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.47	1.47 - 1.47	*

Data Plot and Equation

Caution – Small Sample Size



Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Sunday, Peak Hour of Generator

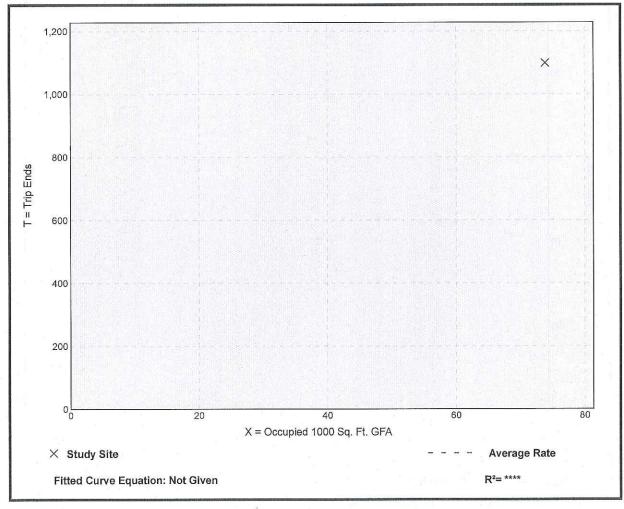
Setting/Location:	General Urban/Suburban
Number of Studies:	Function of Studies 19
1000 Sq. Ft. GFA:	74 - 10 19 28 0001
Directional Distribution:	41% entering, 59% exiting

Person Trip Generation per 1000 Sq. Ft. GFA Average Rate Range of Rates Standard Deviation 0.23 0.23 - 0.23 *

Data Plot and Equation

Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Weekday

Setting/Location: General Urban/Suburban

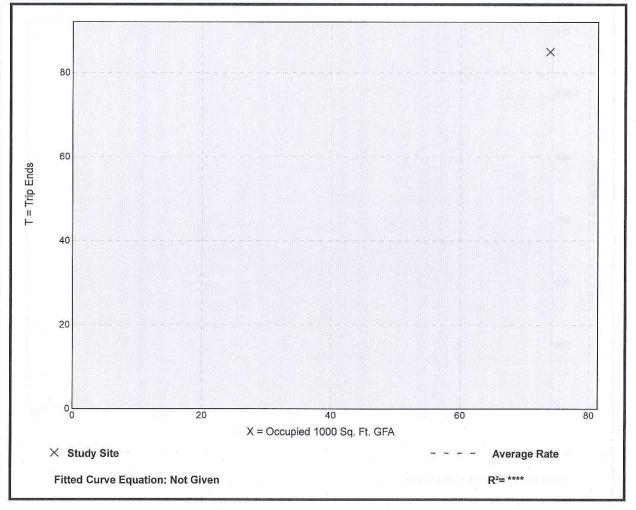

Number of Studies: 1 Occupied 1000 Sq. Ft. GFA: 74

Directional Distribution: 50% entering, 50% exiting

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
14.87	14.87 - 14.87	*

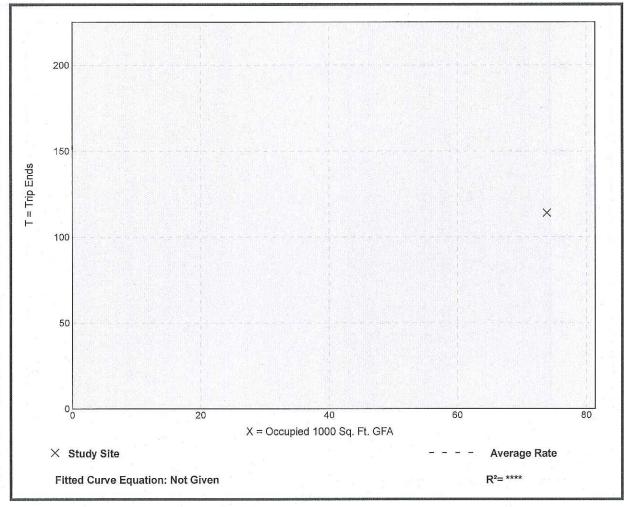
Data Plot and Equation


General Office Building (710) Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. Setting/Location: General Urban/Suburban Number of Studies: 1 Occupied 1000 Sq. Ft. GFA: 74 Directional Distribution: 89% entering, 11% exiting

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.15	1.15 - 1.15	*

Caution - Small Sample Size

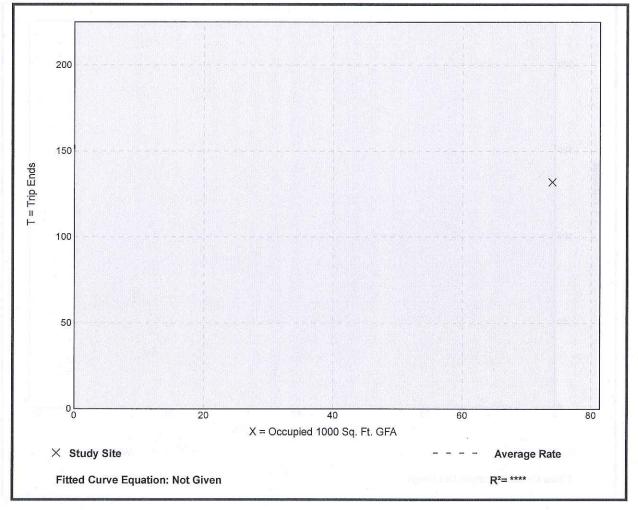

ite=

	General Office Building (710)		
	17.1	Occupied 1000 Sq. Ft. GFA Weekday, Peak Hour of Adjacent Street Traffic,	
		One Hour Between 4 and 6 p.m.	
	Setting/Location:	General Urban/Suburban	
	Number of Studies:	1	
	Occupied 1000 Sq. Ft. GFA:	74	
÷.	Directional Distribution:	16% entering, 84% exiting	

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

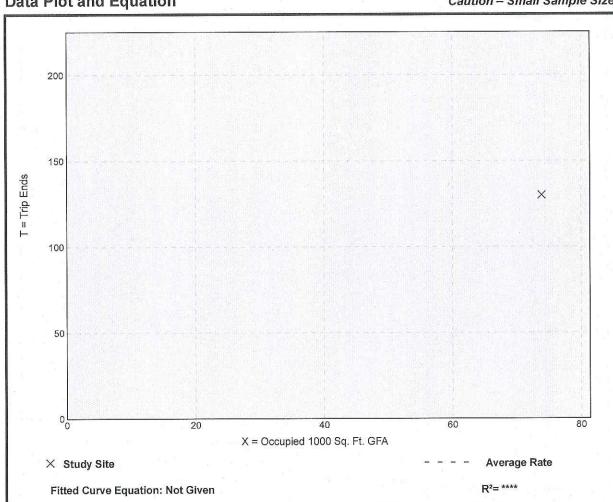
Average Rate	Range of Rates	Standard Deviation
1.54	1.54 - 1.54	*

Data Plot and Equation



General Office Building (710) Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Weekday, AM Peak Hour of Generator Setting/Location: General Urban/Suburban Number of Studies: 1 Occupied 1000 Sq. Ft. GFA: 74 Directional Distribution: 83% entering, 17% exiting Person Trip Generation per Occupied 1000 Sq. Ft. GFA Average Rate Bange of Rates Standard Deviation

44



General Office Building (710) Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Weekday, **PM Peak Hour of Generator** Setting/Location: General Urban/Suburban Number of Studies: 1 Occupied 1000 Sq. Ft. GFA: 74 Directional Distribution: 55% entering, 45% exiting

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

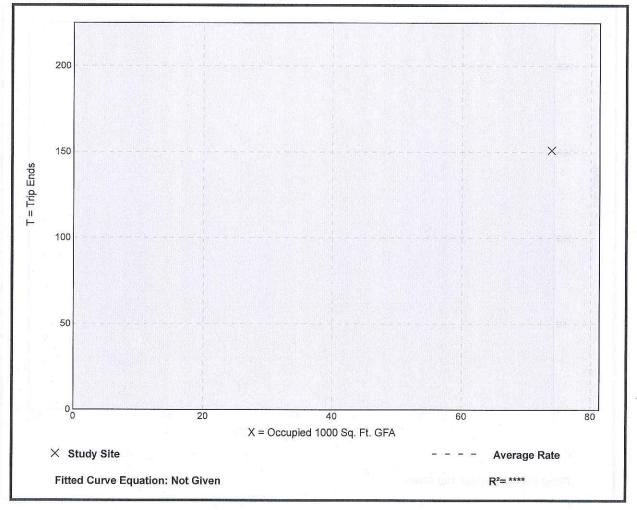
Average Rate	Range of Rates	Standard Deviation
1.76	1.76 - 1.76	*

Data Plot and Equation

Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Saturday

Setting/Location:	General Urban/Suburban
Number of Studies:	1 Restant in aggreets
Occupied 1000 Sq. Ft. GFA:	74
Directional Distribution:	50% entering, 50% exiting

Person Trip Generation p	er Occupied 1000 Sq. Ft. GF	Α	
Average Rate	Range of Rates	Standard Deviation	

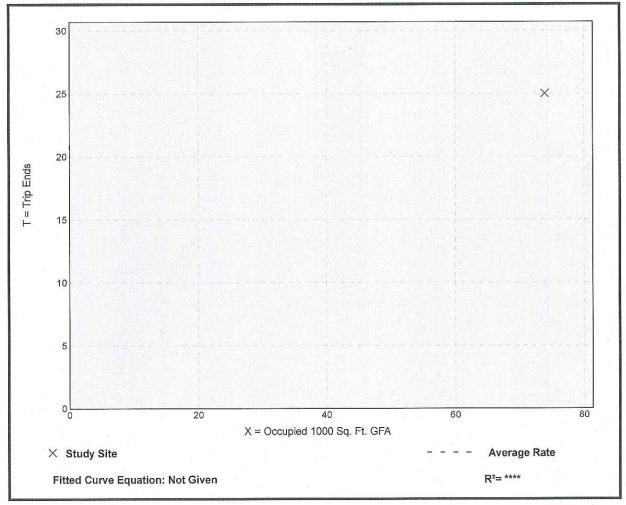

2.04 - 2.04

Data Plot and Equation

2.04

Caution - Small Sample Size

*

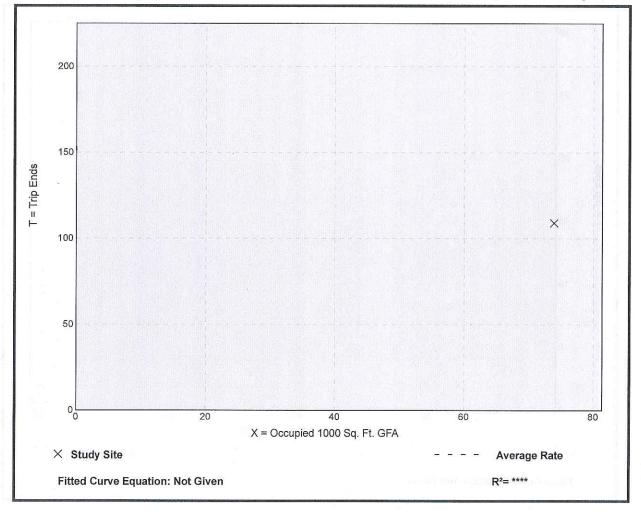

Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Saturday, Peak Hour of Generator

Setting/Location:	General Urban/Suburban
Number of Studies:	1
Occupied 1000 Sq. Ft. GFA:	74
Directional Distribution:	48% entering, 52% exiting

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Data Plot and Equation

Caution – Small Sample Size


Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Sunday

Setting/Location:	General Urban/Suburban	
Number of Studies:	1 1 Telefore 1 tils veiktressell	
Occupied 1000 Sq. Ft. GFA:	74	
Directional Distribution:	50% entering, 50% exiting	

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

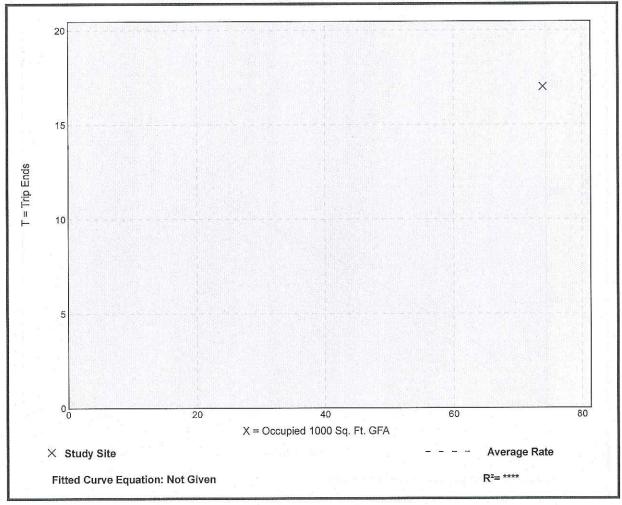
Average Rate	Range of Rates	Standard Deviation
1.47	1.47 - 1.47	*

Data Plot and Equation

ite=

Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Sunday, Peak Hour of Generator

Setting/Location: General Urban/Suburban Number of Studies: 1 Occupied 1000 Sq. Ft. GFA: 74

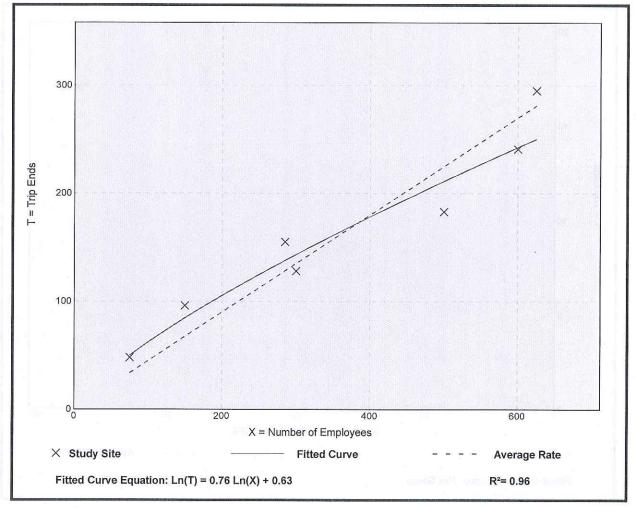

Directional Distribution: 41% entering, 59% exiting

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.23	0.23 - 0.23	*

Data Plot and Equation

Caution – Small Sample Size

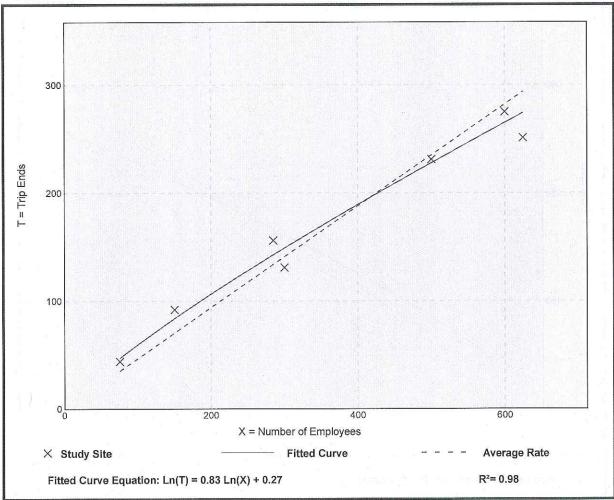


General Office Building (710) Person Trip Ends vs: Employees On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. Setting/Location: General Urban/Suburban Number of Studies: 7 Avg. Num. of Employees: 362 Directional Distribution: 88% entering, 12% exiting

Average Rate	Range of Rates	Standard Deviation
0.45	0.37 - 0.64	0.09

Data Plot and Equation

from Pion and Proveding

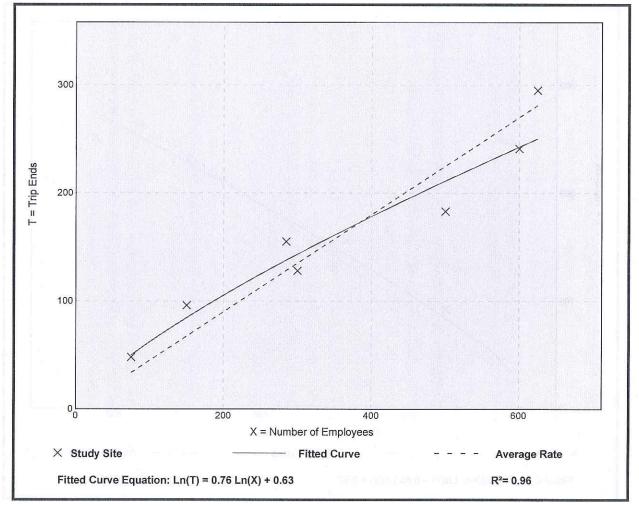


General Office Building (710) Person Trip Ends vs: Employees On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. Setting/Location: General Urban/Suburban Number of Studies: 7 Avg. Num. of Employees: 362 Directional Distribution: 15% entering, 85% exiting

Person Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.47	0.40 - 0.61	0.06

Data Plot and Equation

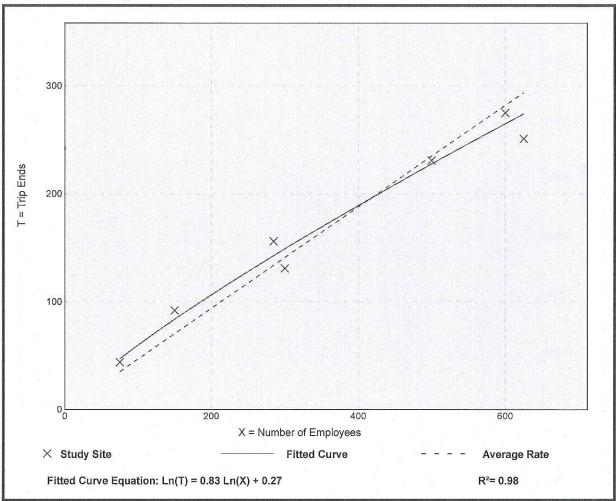


General Office Building (710) Person Trip Ends vs: Employees On a: Weekday, AM Peak Hour of Generator Setting/Location: General Urban/Suburban Number of Studies: 7 Avg. Num. of Employees: 362 Directional Distribution: 88% entering, 12% exiting Person Trip Generation per Employee Average Rate Range of Rates Standard Deviation

 Average Rate	Range of Rates	Standard Deviation	
0.45	0.37 - 0.64	0.09	

Data Plot and Equation

Floi and Squation

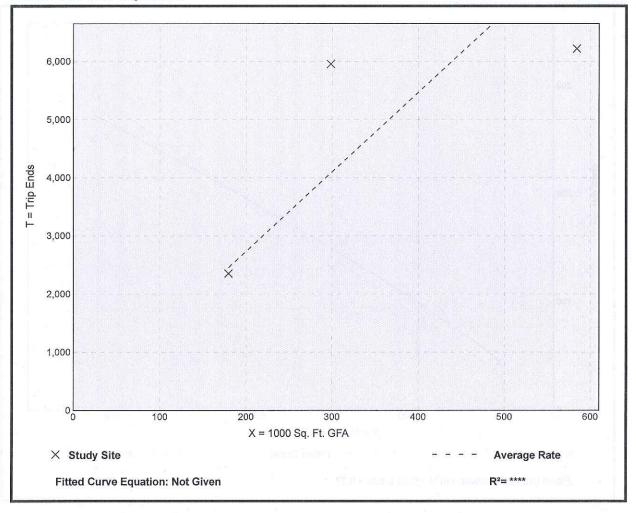


0 2 2		fice Building 10)	n a sea n a sea n
	Person Trip Ends vs: On a:	Employees Weekday, PM Peak Hour of Generator	
	Number of Studies: Avg. Num. of Employees:		

Person Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.47	0.40 - 0.61	0.06

Data Plot and Equation

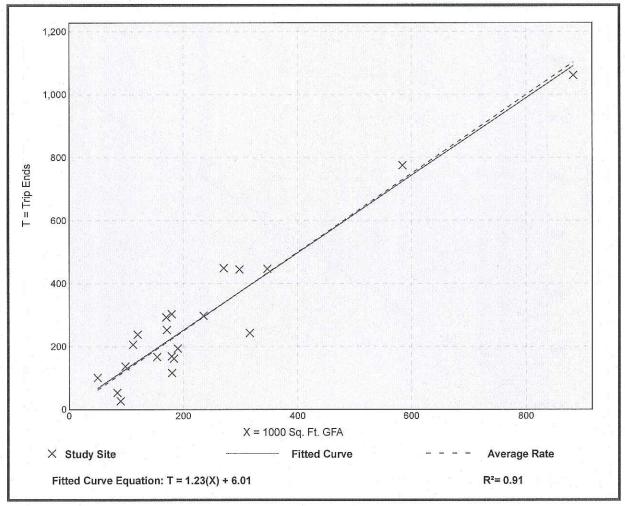

Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday

Setting/Location:	Dense Multi-Use Urban
Number of Studies:	3 econd to consult a
1000 Sq. Ft. GFA:	354
Directional Distribution:	50% entering, 50% exiting

Person	Trip	Generation	per	1000	Sq.	Ft. GFA	

Average Rate	Range of Rates	Standard Deviation
13.68	10.65 - 19.96	18.49

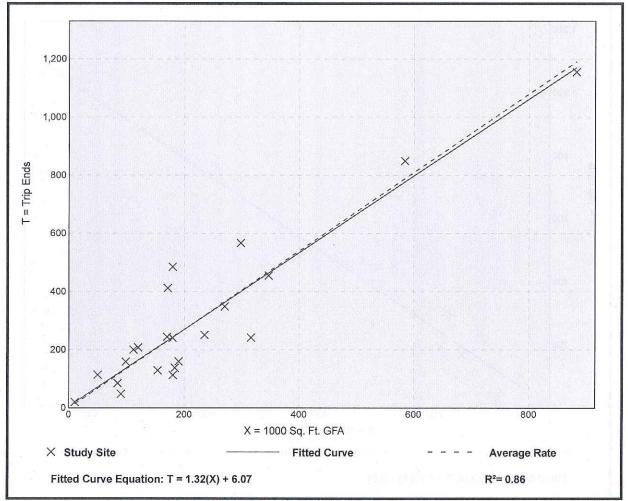
Data Plot and Equation


ite=

General Office Building
(710)Person Trip Ends vs:1000 Sq. Ft. GFA
On a:On a:Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.Setting/Location:Dense Multi-Use UrbanNumber of Studies:21
1000 Sq. Ft. GFA:1000 Sq. Ft. GFA:233
87% entering, 13% exiting

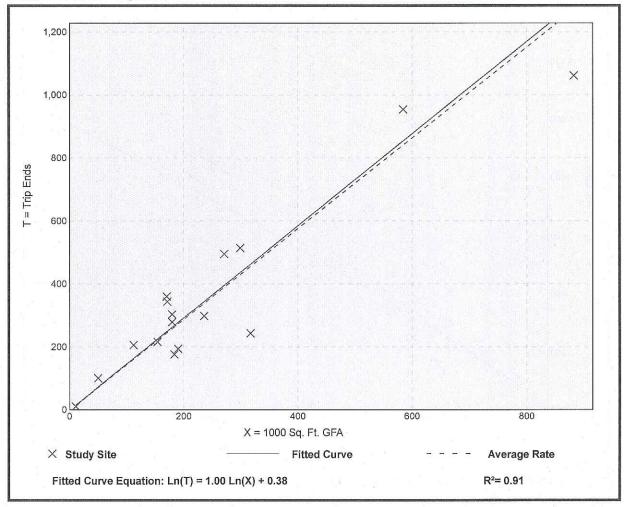
Person Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.25	0.30 - 2.02	0.36


Data Plot and Equation

General Office Building (710) Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. Setting/Location: Dense Multi-Use Urban Number of Studies: 22 1000 Sq. Ft. GFA: 223 Directional Distribution: 22% entering, 78% exiting

Average Rate	Range of Rates	Standard Deviation
1.35	0.53 - 2.70	0.50



General Office Building (710) Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday, AM Peak Hour of Generator Setting/Location: Dense Multi-Use Urban Number of Studies: 16 1000 Sq. Ft. GFA: 1000 Sq. Ft. GFA: 249 Directional Distribution: 83% entering, 17% exiting

Person Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.44	0.77 - 2.12	0.38

Data Plot and Equation

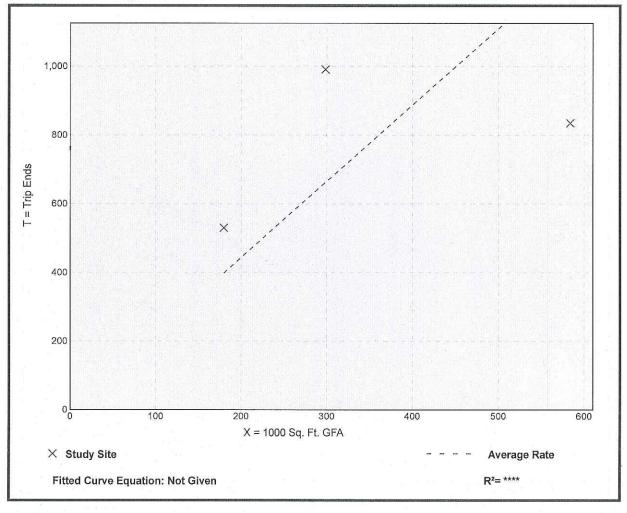
General Office Building (710) Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday, **PM Peak Hour of Generator Dense Multi-Use Urban** Setting/Location: Number of Studies: 16 1000 Sq. Ft. GFA: 249 Directional Distribution: 25% entering, 75% exiting Person Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.46	0.75 - 2.70	0.55

Data Plot and Equation

Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Saturday

Setting/Location: Dense Multi-Use Urban

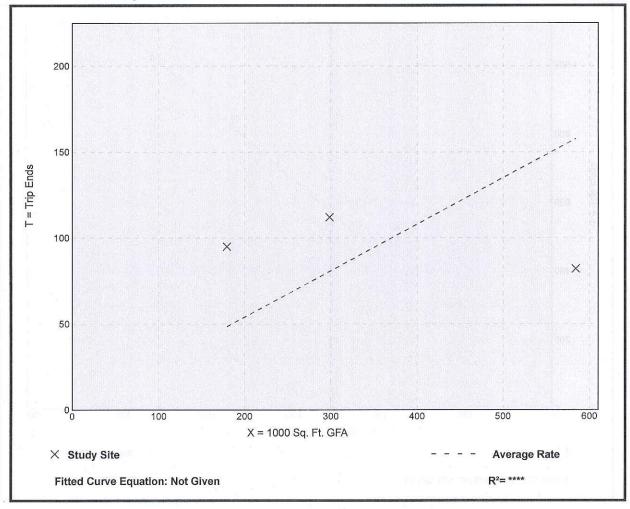

Number of Studies: 3 1000 Sq. Ft. GFA: 354

Directional Distribution: 50% entering, 50% exiting

Person Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
2.22	1.43 - 3.32	3.30

Data Plot and Equation


Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Saturday, Peak Hour of Generator

Setting/Location:	Dense Multi-Use Urban
Number of Studies:	3
1000 Sq. Ft. GFA:	354
Directional Distribution:	48% entering, 52% exiting

Person Trip Generation per 1000 Sq. Ft. GFA

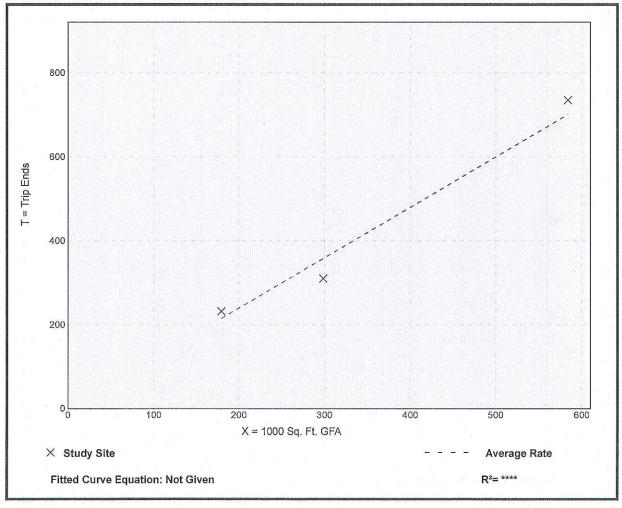
Data Plot and Equation

Caution – Small Sample Size

iter

Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Sunday

Setting/Location: Dense Multi-Use Urban

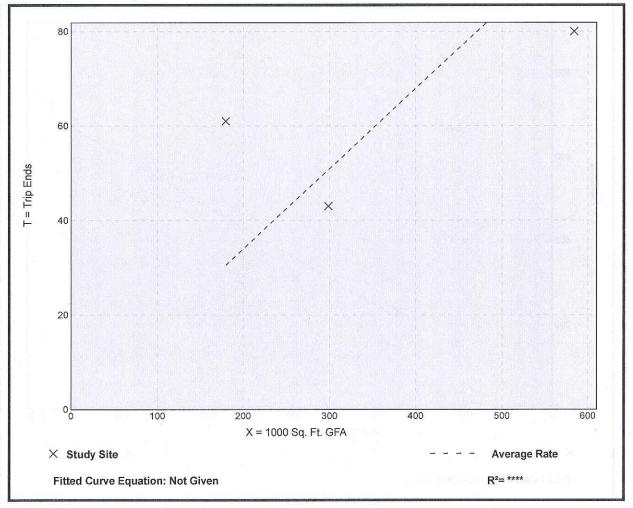

Number of Studies: 3 1000 Sq. Ft. GFA: 354 Directional Distribution: 50% entering, 50% exiting

Person Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.20	1.04 - 1.29	1.47

Caution - Small Sample Size

Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Sunday, Peak Hour of Generator


Dense Multi-Use Urban
3 melandel to sea must
354
36% entering, 64% exiting

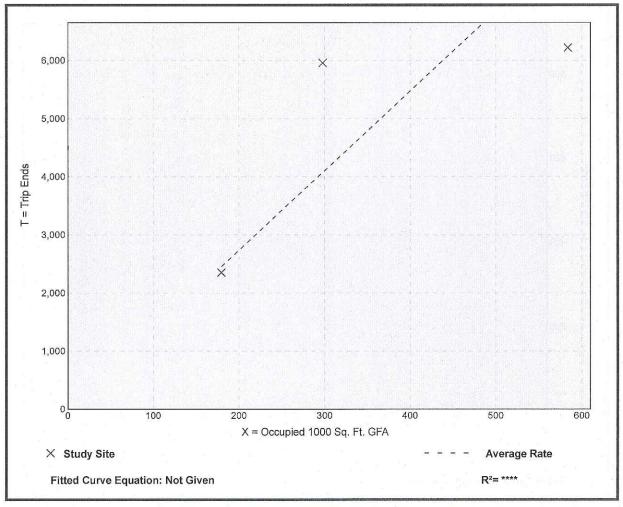
Person Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.17	0.14 - 0.34	0.28

Data Plot and Equation

Caution – Small Sample Size

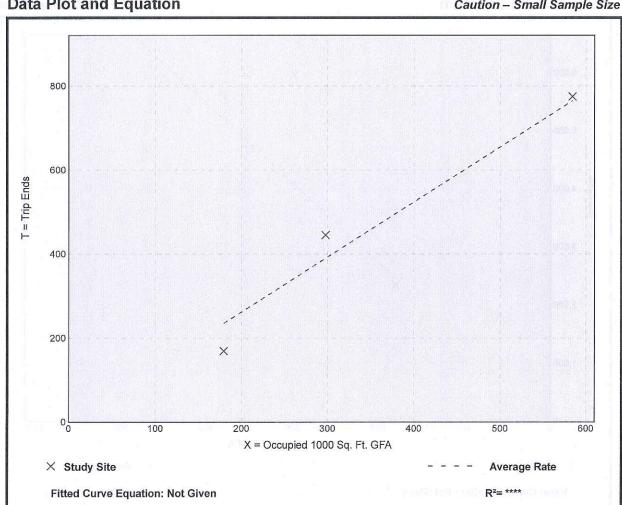
ite=


Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Weekday

Setting/Location: Dense Multi-Use Urban Number of Studies: 3 Occupied 1000 Sq. Ft. GFA: 354 Directional Distribution: 50% entering, 50% exiting

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

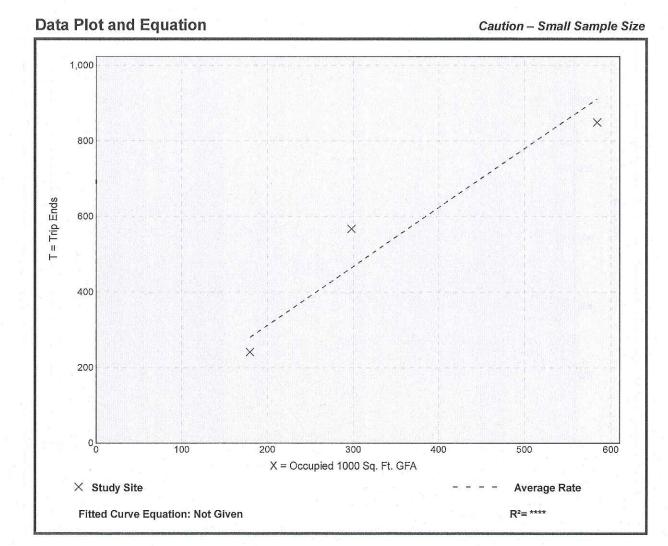
Average Rate	Range of Rates	Standard Deviation
13.69	10.65 - 20.02	18.52



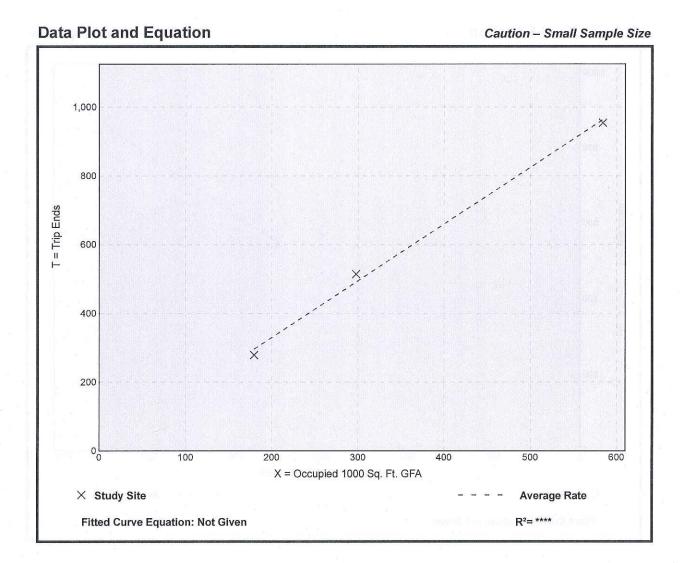
Person Trip Ends vs:	Occupied 1000 Sq. Ft. GFA
-	Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 7 and 9 a.m.
Setting/Location:	Dense Multi-Use Urban
Number of Studies:	3 abilitis in tadmuM
	354
Directional Distribution:	92% entering, 8% exiting

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.31	0.94 - 1.50	1.56

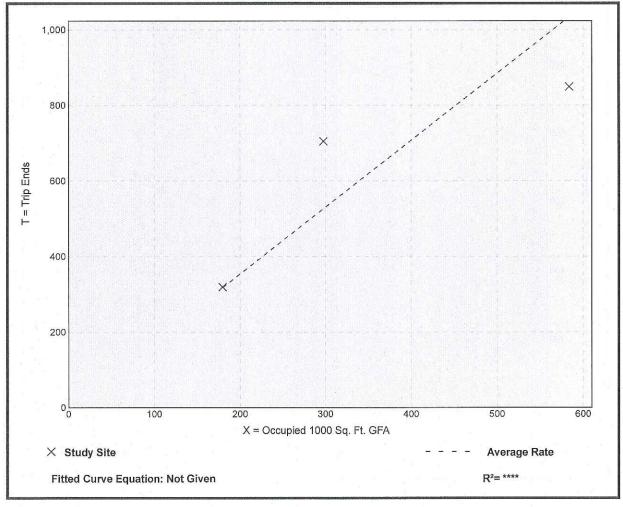

Data Plot and Equation

64


 General Of (7	fice Building 10)
Person Trip Ends vs: On a:	Occupied 1000 Sq. Ft. GFA Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
 Setting/Location: Number of Studies: Occupied 1000 Sq. Ft. GFA: Directional Distribution:	Dense Multi-Use Urban 3

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

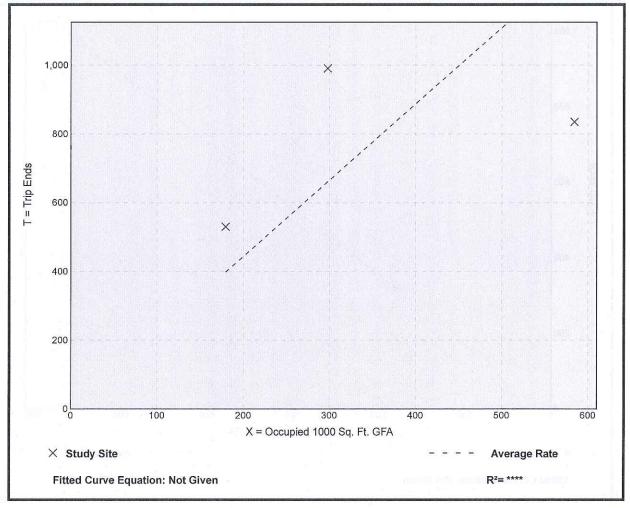
General Office Building (710) Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Weekday, M Peak Hour of Generator Setting/Location: Dense Multi-Use Urban Number of Studies: 3 Occupied 1000 Sq. Ft. GFA: 354 Directional Distribution: 78% entering, 22% exiting


Average Rate	Range of Rates	Standard Deviation
1.65	1.55 - 1.73	2.01

General Office Building (710) Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Weekday, PM Peak Hour of Generator Setting/Location: Dense Multi-Use Urban Number of Studies: 3 Occupied 1000 Sq. Ft. GFA: 354 Directional Distribution: 26% entering, 74% exiting

Average Rate	Range of Rates	Standard Deviation
1.77	1.45 - 2.37	2.33

Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Saturday

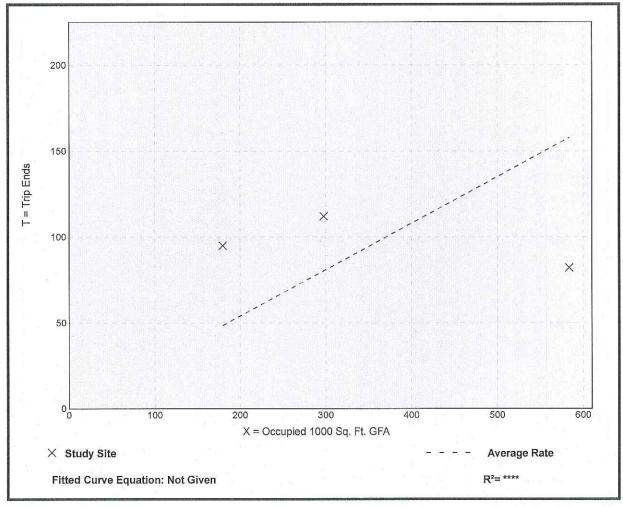

Setting/Location:	Dense Multi-Use Urban
Number of Studies:	3
Occupied 1000 Sq. Ft. GFA:	354
Directional Distribution:	50% entering, 50% exiting

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
2.22	1.43 - 3.33	3.31

68

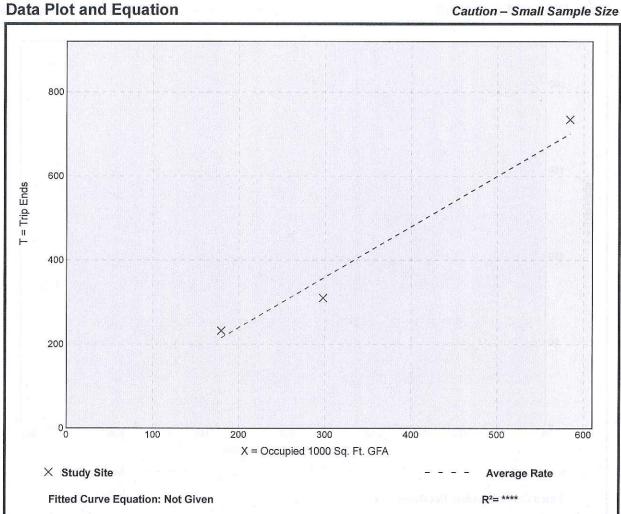
ite=


Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Saturday, Peak Hour of Generator

Setting/Location:Dense Multi-Use UrbanNumber of Studies:3Occupied 1000 Sq. Ft. GFA:354Directional Distribution:48% entering, 52% exiting

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.27	0.14 - 0.53	0.47



Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Sunday

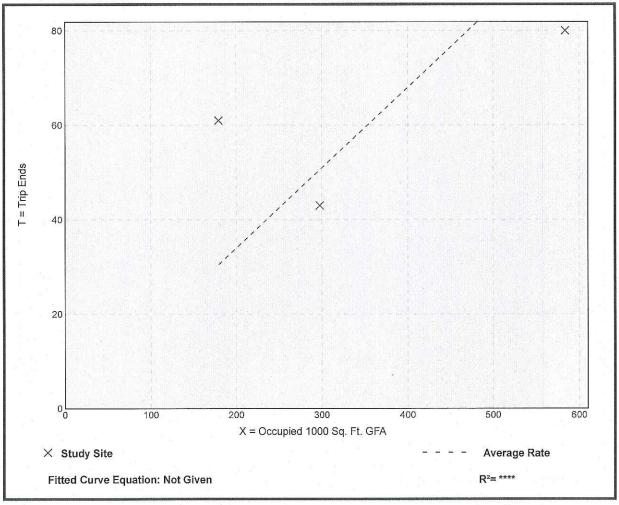
Setting/Location:	Dense Multi-Use Urban
Number of Studies:	3 and and to an burn M
Occupied 1000 Sq. Ft. GFA:	354
Directional Distribution:	50% entering, 50% exiting

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.20	1.04 - 1.29	1.47

70

Trip Generation Manual 10th Edition • Volume 2: Data • Office (Land Uses 700-799)

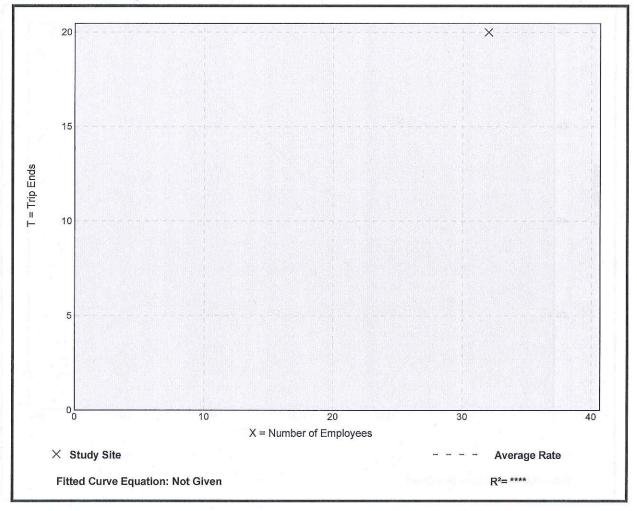

Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Sunday, Peak Hour of Generator

Setting/Location:Dense Multi-Use UrbanNumber of Studies:3Occupied 1000 Sq. Ft. GFA:354Directional Distribution:36% entering, 64% exiting

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.17	0.14 - 0.34	0.28

Data Plot and Equation


General Office Building (710) Person Trip Ends vs: Employees On a: On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. Setting/Location: Dense Multi-Use Urban Number of Studies: 1 Avg. Num. of Employees: 32 Directional Distribution: 25% entering, 75% exiting

Person Trip Generation per Employee

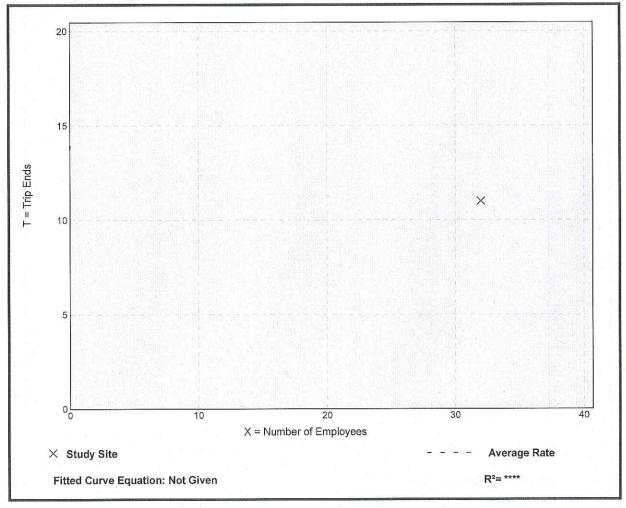
Average Rate	Range of Rates	Standard Deviation
0.63	0.63 - 0.63	*

Data Plot and Equation

Caution - Small Sample Size

72

ite=

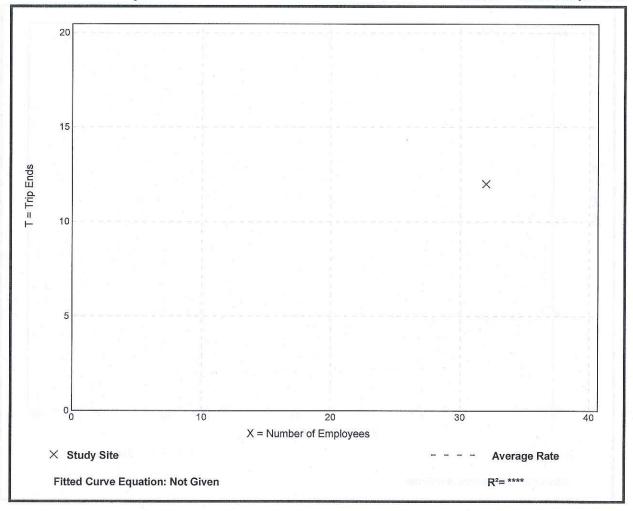

 General Of (7	fice Building	-	v
	Employees Weekday, AM Peak Hour of Generator		
Number of Studies: Avg. Num. of Employees:			4 7 8

Person Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.34	0.34 - 0.34	*

Data Plot and Equation

Caution – Small Sample Size


On a:	Employees Weekday, PM Peak Hour of Generator
Setting/Location:	Dense Multi-Use Urban
Number of Studies:	11 eadured to endmund
Avg. Num. of Employees:	32
Directional Distribution:	25% entering, 75% exiting

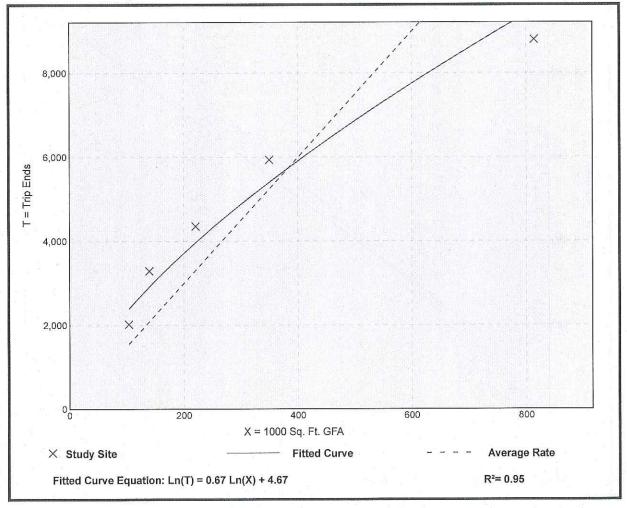
Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.38	0.38 - 0.38	*

Data Plot and Equation

Caution - Small Sample Size

Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday

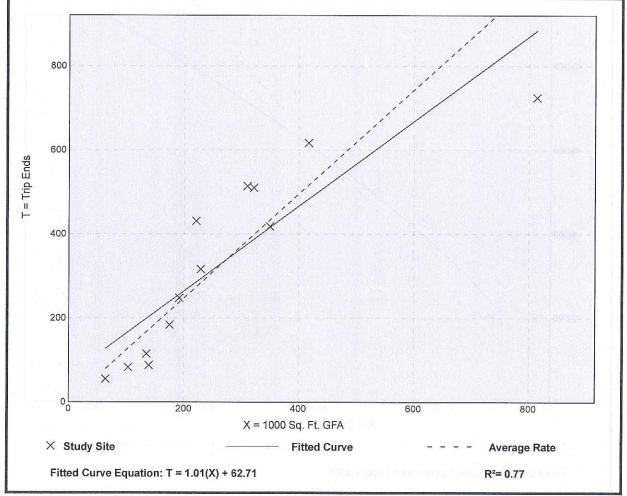

Setting/Location:	Center City Core
Number of Studies:	5
1000 Sq. Ft. GFA:	325
Directional Distribution:	50% entering, 50% exiting

Person Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
14.99	10.81 - 23.61	5.04

Data Plot and Equation

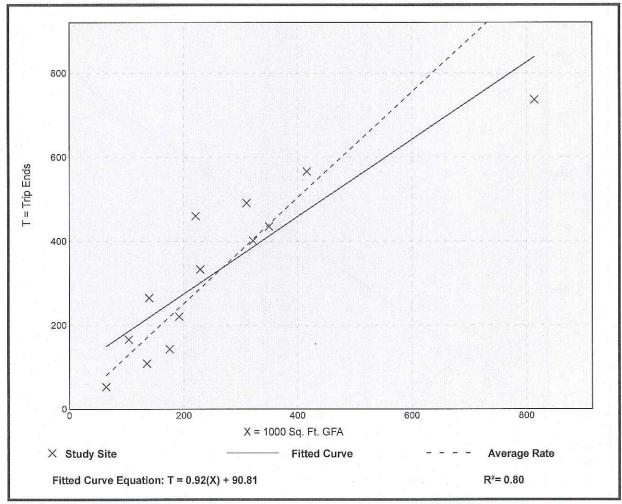
Caution - Small Sample Size


General Office Building
(710)Person Trip Ends vs:1000 Sq. Ft. GFA
On a:On a:Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.Setting/Location:Center City CoreNumber of Studies:13
1000 Sq. Ft. GFA:1000 Sq. Ft. GFA:267
267Directional Distribution:87% entering, 13% exiting

Person Trip Generation per 1000 Sq. Ft. GFA

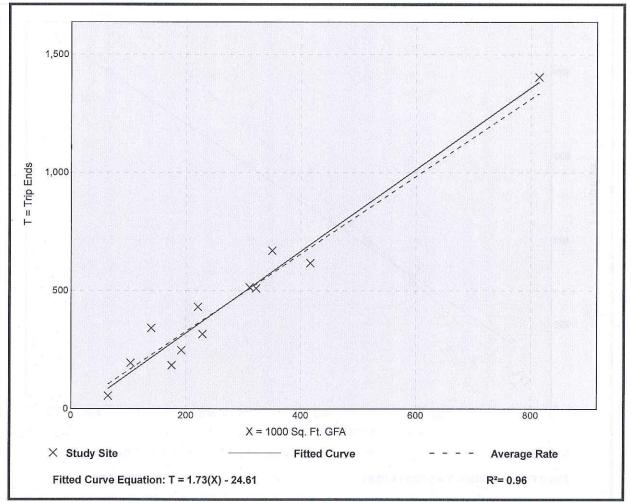
Average Rate	Range of Rates	Standard Deviation
1.24	0.63 - 1.95	0.37

Deta Floi und Equation


76

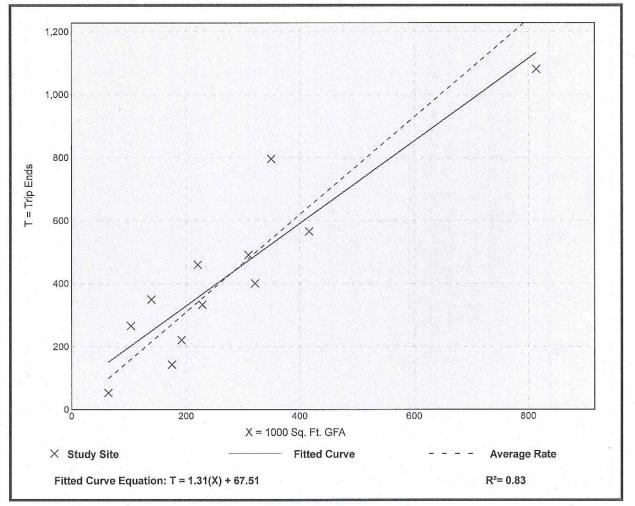
General Office Building (710)			7
	Person Trip Ends vs:	1000 Sq. Ft. GFA	
	On a:	Weekday,	
		Peak Hour of Adjacent Street Traffic,	
		One Hour Between 4 and 6 p.m.	
	Setting/Location:	Center City Core	
	Number of Studies:	13	
	1000 Sq. Ft. GFA:	267	
	Directional Distribution:	16% entering, 84% exiting	

Person Trip Generation per 1000 Sq. Ft. GFA


Average Rate	Range of Rates	Standard Deviation
1.26	0.81 - 2.08	0.37

	General Office Building (710)	
Person Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday,	
	AM Peak Hour of Generator	
Setting/Location:		
Number of Studies:	12 calculate to technolit	
1000 Sq. Ft. GFA:	278	
Directional Distribution:	85% entering, 15% exiting	

Average Rate	Range of Rates	Standard Deviation
1.64	0.86 - 2.45	0.31

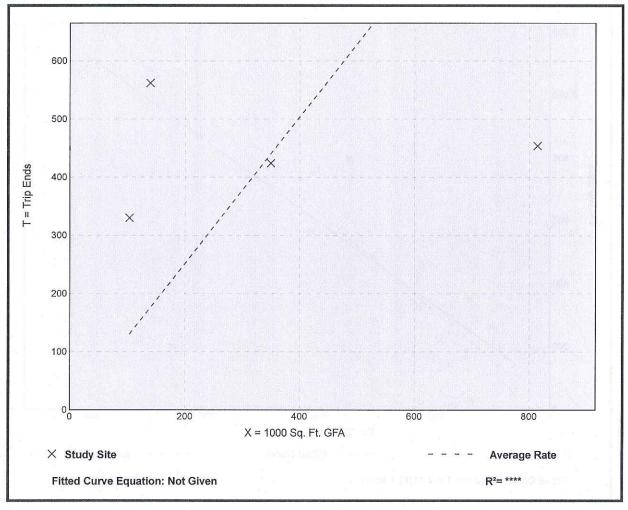


78

General Office Building (710) Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday, PM Peak Hour of Generator Setting/Location: Center City Core Number of Studies: 12 1000 Sq. Ft. GFA: 278 Directional Distribution: 32% entering, 68% exiting

Average Rate	Range of Rates	Standard Deviation
		- 12
1.55	0.82 - 2.57	0.49

Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Saturday


Core
l

Number of Studies:	4 selling is to realize the
1000 Sq. Ft. GFA:	352
Directional Distribution:	50% entering, 50% exiting

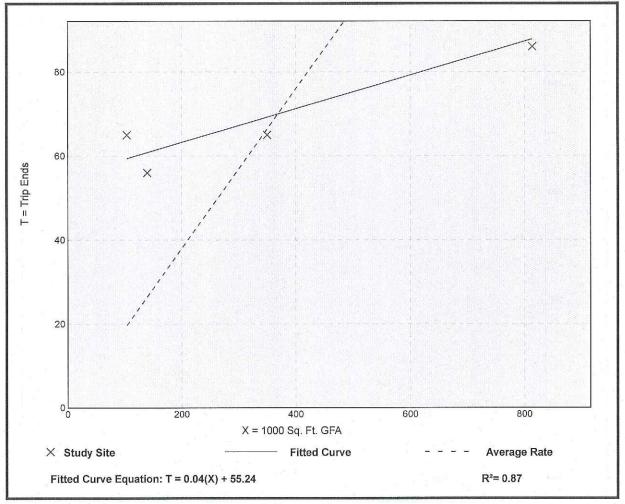
Person Trip Generation per 1000 Sq. Ft. GFA

Data Plot and Equation

Caution - Small Sample Size

80

.


Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Saturday, Peak Hour of Generator

	Setting/Location:	Center City Core
	Number of Studies:	4
	1000 Sq. Ft. GFA:	352
D	irectional Distribution:	50% entering, 50% exiting

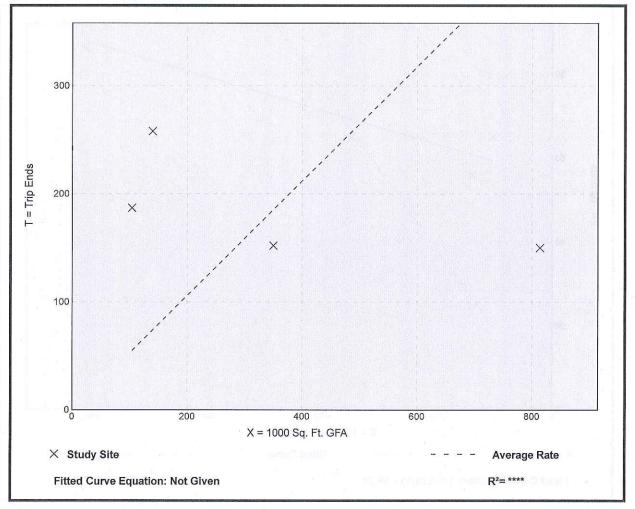
Person Trip Generation per 1000 Sq. Ft. GFA

Data Plot and Equation

Caution – Small Sample Size

Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Sunday

Setting/Location:	Center City Core	
-------------------	------------------	--


Number of Studies:	4 emphaning second
1000 Sq. Ft. GFA:	352
Directional Distribution:	50% entering, 50% exiting

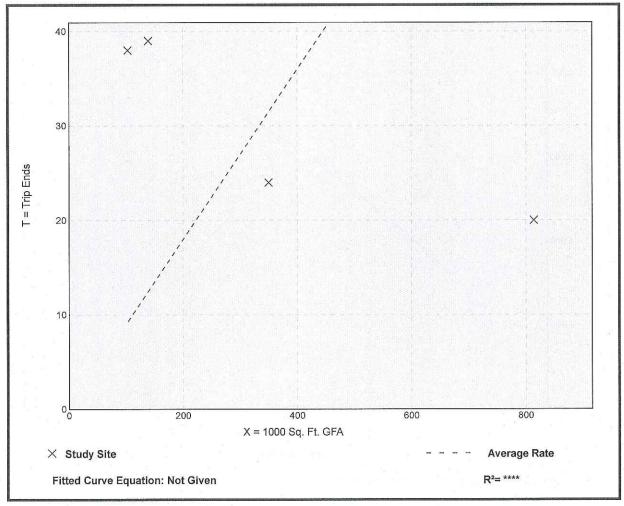
Person Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.53	0.18 - 1.85	0.70

Data Plot and Equation

Caution - Small Sample Size

Person Trip Ends vs: 1000 Sq. Ft. GFA On a: Sunday, Peak Hour of Generator

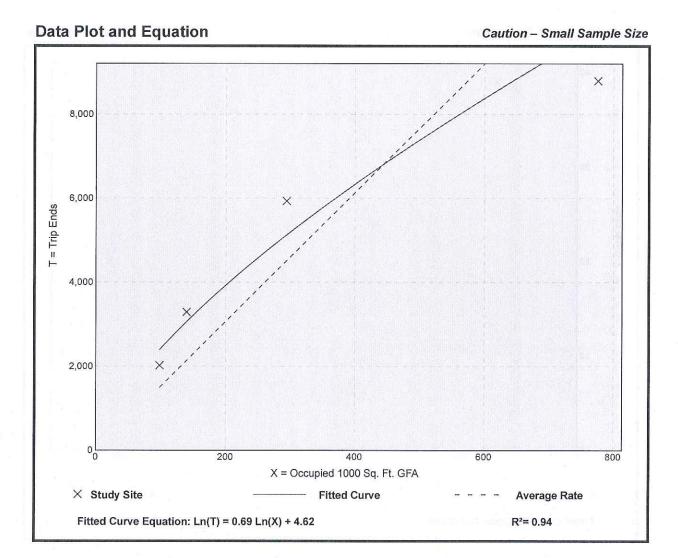

Setting/Location: Center City Core Number of Studies: 4 1000 Sq. Ft. GFA: 352 Directional Distribution: 64% entering, 36% exiting

Person Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.09	0.02 - 0.37	0.13

Data Plot and Equation

Caution - Small Sample Size

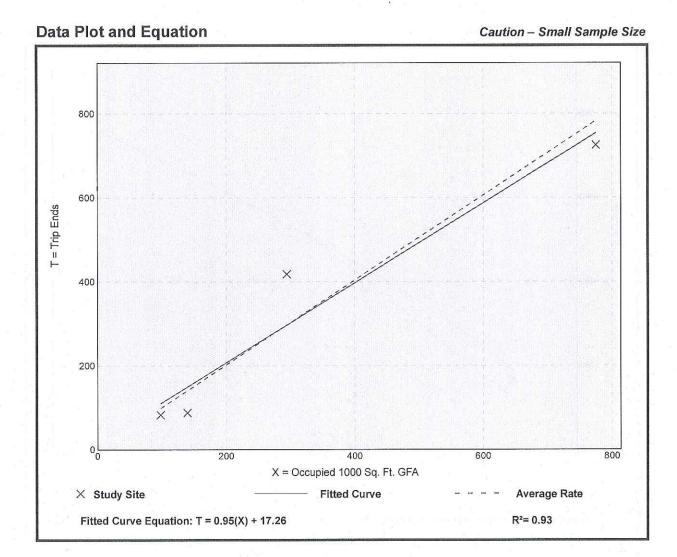


Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Weekday

Center City Core
4
327
50% entering, 50% exiting

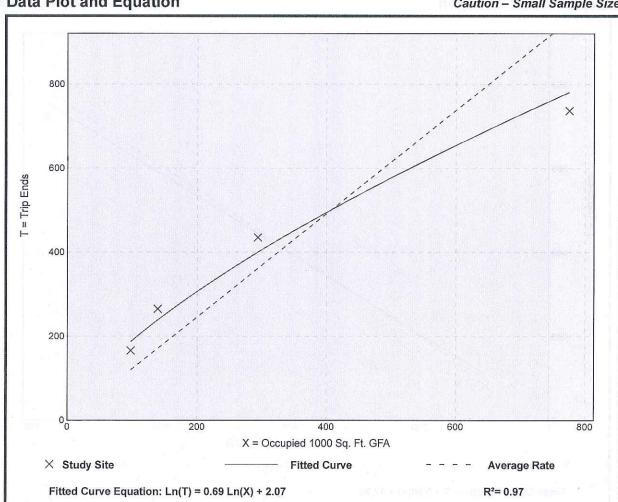
Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
15.34	11.34 - 23.61	5.68


84

General Office Building
(710)Person Trip Ends vs:Occupied 1000 Sq. Ft. GFA
On a:On a:Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.Setting/Location:Center City CoreNumber of Studies:4Occupied 1000 Sq. Ft. GFA:327
Directional Distribution:92% entering, 8% exiting

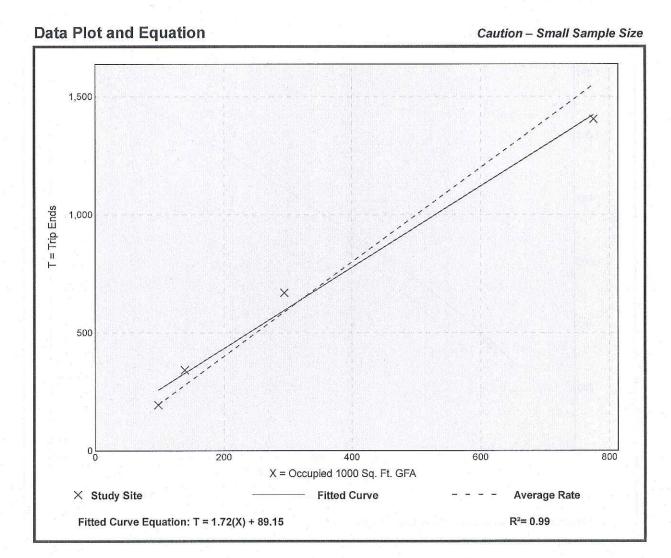
Person Trip Generation per Occupied 1000 Sq. Ft. GFA


Average Rate	Range of Rates	Standard Deviation
1.01	0.63 - 1.42	0.28

Person Trip Ends vs:	Occupied 1000 Sq. Ft. GFA	
On a:	Weekday,	
	Peak Hour of Adjacent Street Traffic,	
	One Hour Between 4 and 6 p.m.	
Setting/Location:	Center City Core	
Number of Studies:	4 modell2 to recting vi	
Occupied 1000 Sq. Ft. GFA:	327	
Directional Distribution:	18% entering, 82% exiting	

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.23	0.95 - 1.90	0.41

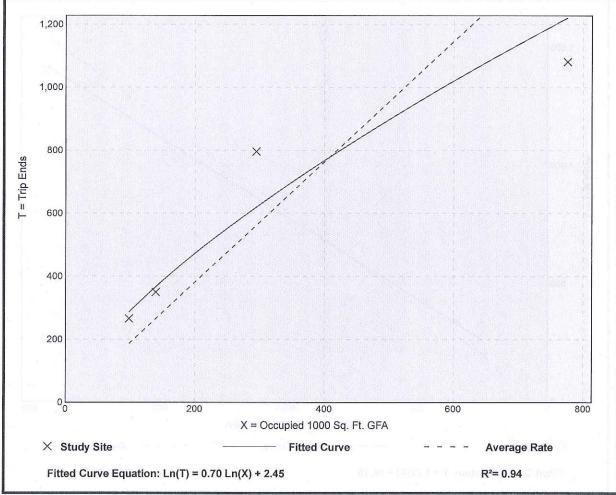

Data Plot and Equation

Caution - Small Sample Size

Hef

General Office Building (710) Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Weekday, AM Peak Hour of Generator Setting/Location: Center City Core Number of Studies: 4 Occupied 1000 Sq. Ft. GFA: 327 Directional Distribution: 86% entering, 14% exiting

Average Rate	Range of Rates	Standard Deviation
2.00	1.81 - 2.45	0.28

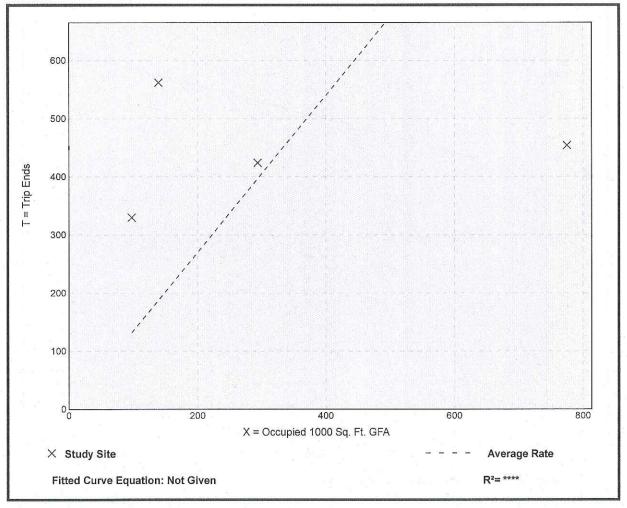

87

General Office Building (710) Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Weekday, PM Peak Hour of Generator Setting/Location: Center City Core Number of Studies: 4 Occupied 1000 Sq. Ft. GFA: 327 Directional Distribution: 50% entering, 50% exiting Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.91	1.39 - 2.72	0.72

Caution - Small Sample Size

Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Saturday


Setting/Location:Center City CoreNumber of Studies:4Occupied 1000 Sq. Ft. GFA:327Directional Distribution:50% entering, 50% exiting

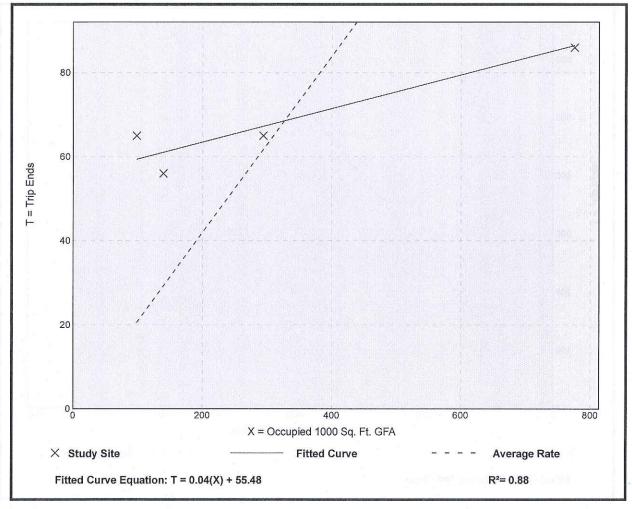
Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.35	0.59 - 4.03	1.38

Data Plot and Equation

Caution - Small Sample Size

Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Saturday, Peak Hour of Generator


Setting/Location:	Center City Core	
Number of Studies:	4 protocol for electronic l	
Occupied 1000 Sq. Ft. GFA:	327	
Directional Distribution:	50% entering, 50% exiting	
		3

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

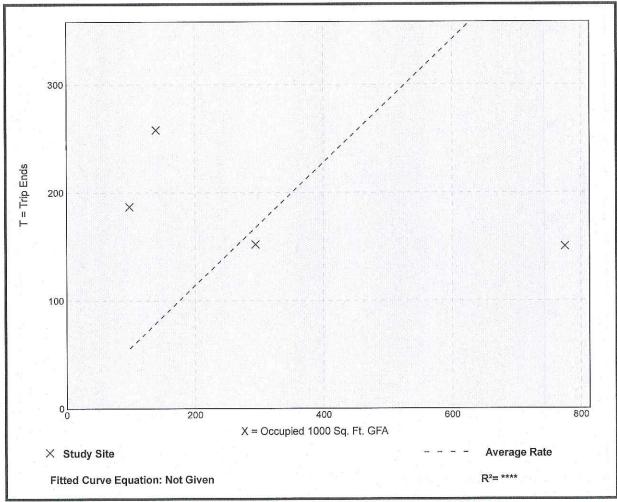
Average Rate	Range of Rates	Standard Deviation
0.21	0.11 - 0.67	0.18

Data Plot and Equation

Caution – Small Sample Size

Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Sunday

Setting/Location: Center City Core

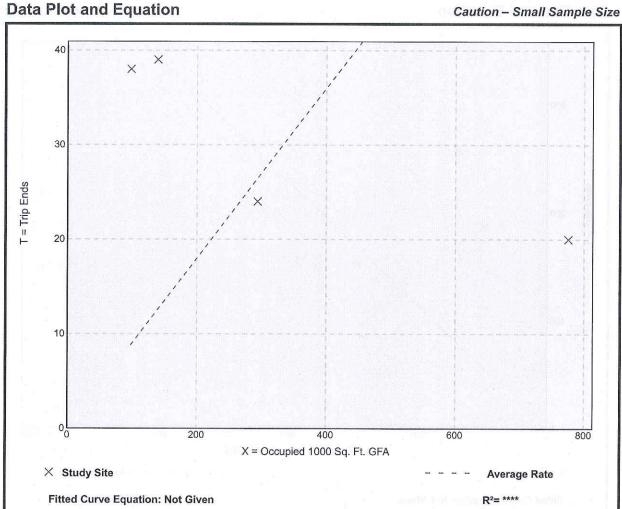

Number of Studies: 4 Occupied 1000 Sq. Ft. GFA: 327 Directional Distribution: 50% entering, 50% exiting

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Data Plot and Equation

Caution – Small Sample Size

91



Person Trip Ends vs: Occupied 1000 Sq. Ft. GFA On a: Sunday, Peak Hour of Generator

Setting/Location:	Center City Core
Number of Studies:	4 doubted by well-black
Occupied 1000 Sq. Ft. GFA:	327
Directional Distribution:	64% entering, 36% exiting

Person Trip Generation per Occupied 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.09	0.03 - 0.39	0.13

ite=

Land Use: 760 Research and Development Center

Description

A research and development center is a facility or group of facilities devoted almost exclusively to research and development activities. The range of specific types of businesses contained in this land use category varies significantly. Research and development centers may contain offices and light fabrication areas. General office building (Land Use 710), corporate headquarters building (Land Use 714), single tenant office building (Land Use 715), office park (Land Use 750), and business park (Land Use 770) are related uses.

Additional Data

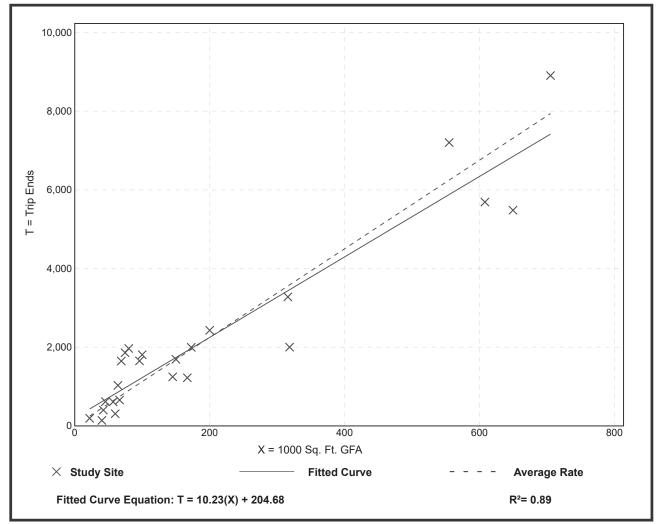
The average numbers of person trips per vehicle trip at the 11 general urban/suburban sites at which both person trip and vehicle trip data were collected were as follows:

- 1.36 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- 1.36 during Weekday, AM Peak Hour of Generator
- 1.45 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- 1.43 during Weekday, PM Peak Hour of Generator

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), California, Iowa, Maryland, Minnesota, Montana, and Pennsylvania.

Source Numbers

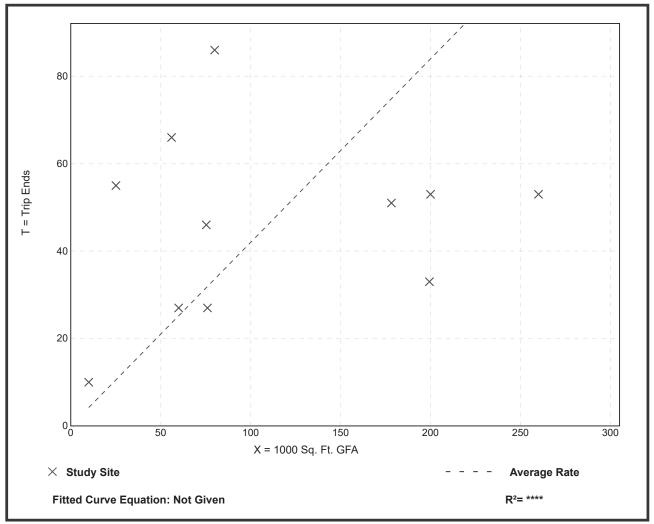
105, 157, 213, 218, 253, 332, 384, 423, 630, 723, 911, 973


(760)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday

Setting/Location:	General Urban/Suburban
Number of Studies:	24
1000 Sq. Ft. GFA:	200
Directional Distribution:	50% entering, 50% exiting

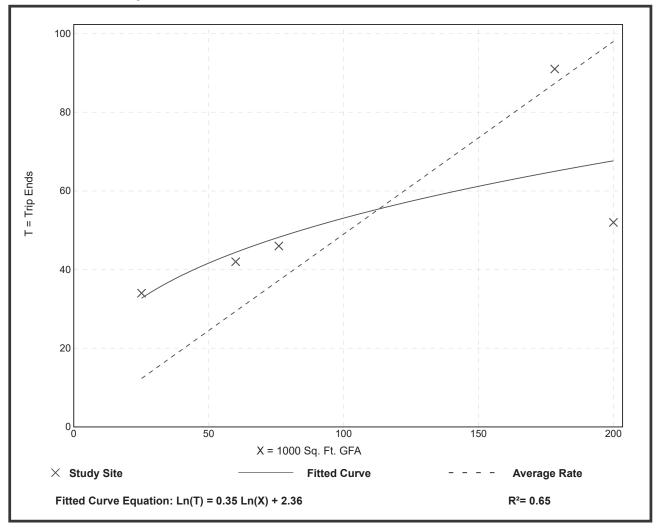
Vehicle Trip Generation per 1000 Sq. Ft. GFA


Average Rate	Range of Rates	Standard Deviation
11.26	3.48 - 24.95	4.07

Vehicle Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	11
1000 Sq. Ft. GFA:	111
Directional Distribution:	75% entering, 25% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

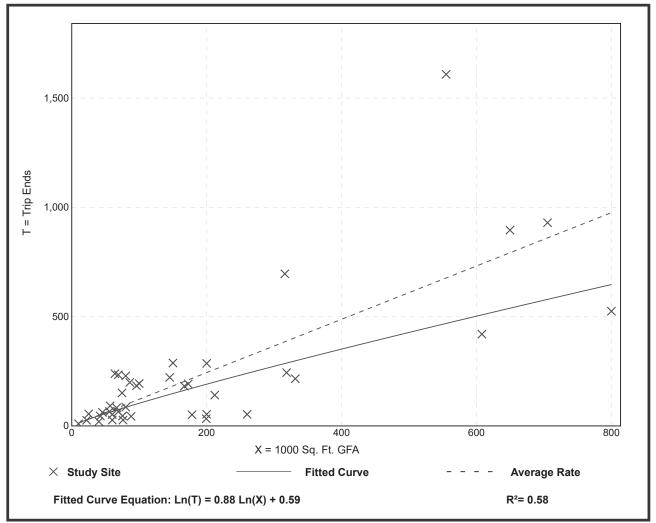
Average Rate	Range of Rates	Standard Deviation
0.42	0.17 - 2.19	0.41


Vehicle Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	5
1000 Sq. Ft. GFA:	108
Directional Distribution:	15% entering, 85% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.49	0.26 - 1.35	0.28

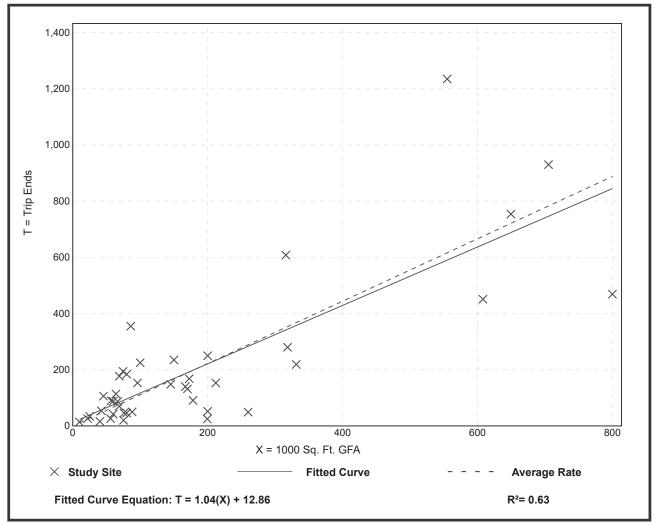
Data Plot and Equation


Caution – Small Sample Size

Vehicle Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, AM Peak Hour of Generator
Setting/Location:	General Urban/Suburban
Number of Studies:	41
1000 Sq. Ft. GFA:	186
Directional Distribution:	83% entering, 17% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

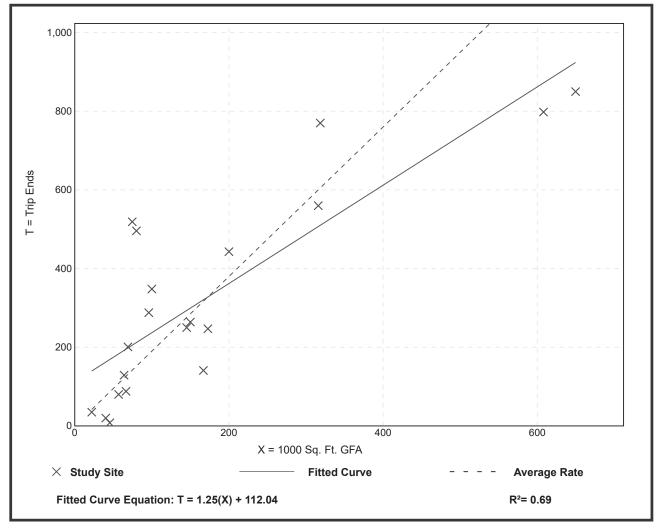
Average Rate	Range of Rates	Standard Deviation
1.22	0.17 - 3.73	0.81



Vehicle Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, PM Peak Hour of Generator
Setting/Location:	General Urban/Suburban
Number of Studies:	42
1000 Sq. Ft. GFA:	185
	185 16% entering, 84% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.11	0.13 - 4.13	0.70

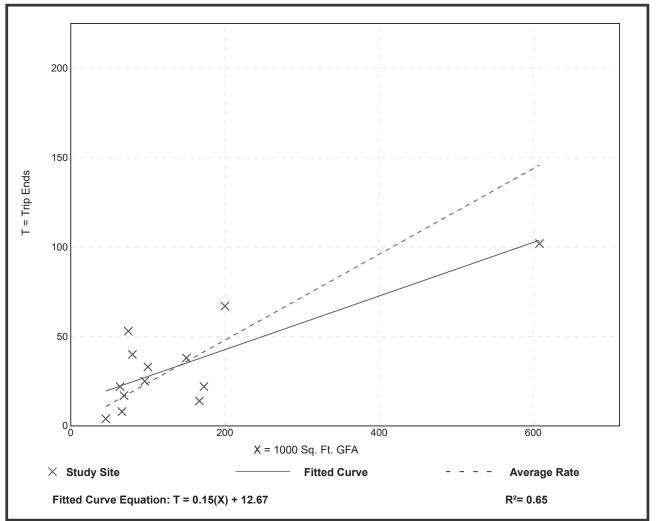

(760)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Saturday

entering, 50% exiting
>

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.90	0.18 - 6.96	1.22

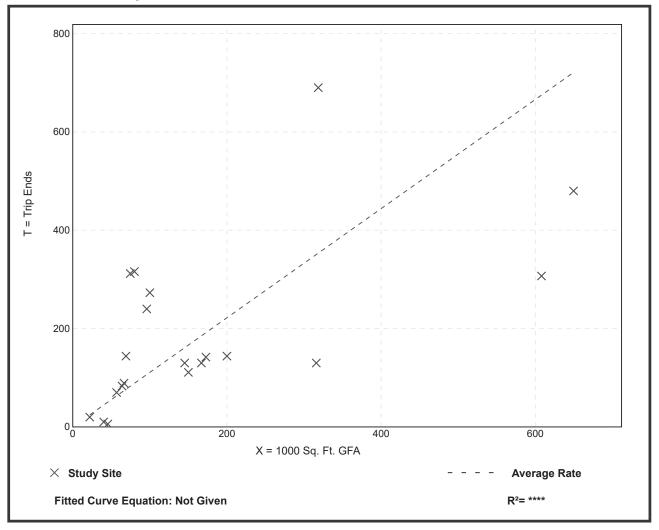

(760)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Saturday, Peak Hour of Generator

Setting/Location:	General Urban/Suburban
Number of Studies:	13
1000 Sq. Ft. GFA:	146
Directional Distribution:	Not Available

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.24	0.08 - 0.71	0.14

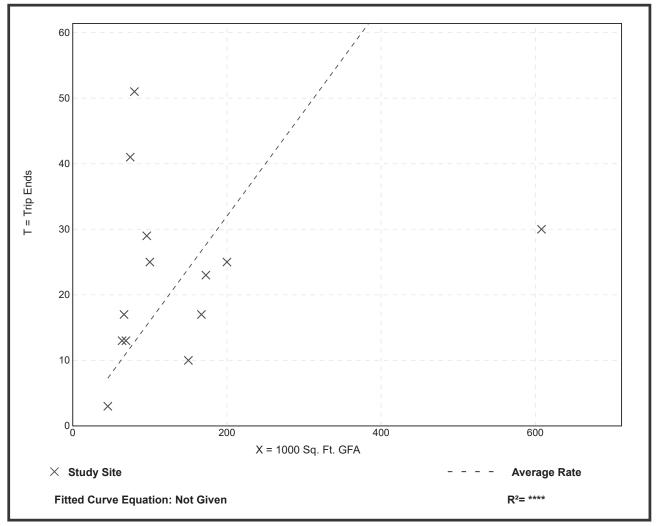

(760)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Sunday

Setting/Location:	General Urban/Suburban
Number of Studies:	20
1000 Sq. Ft. GFA:	172
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.11	0.13 - 4.18	0.93


(760)

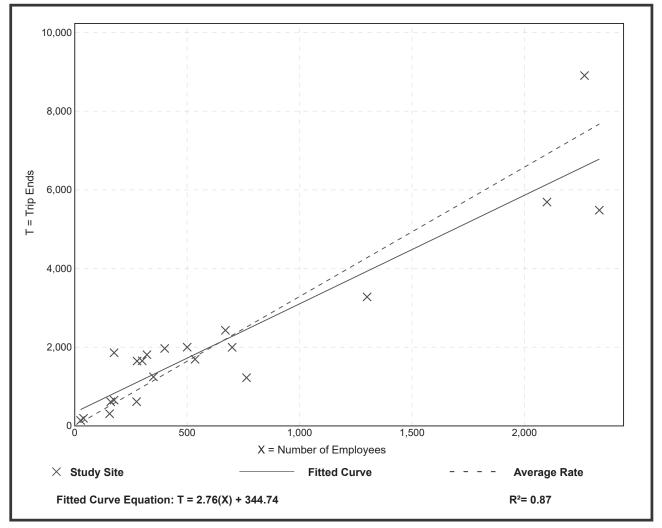
Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Sunday, Peak Hour of Generator

General Urban/Suburban
3
46
lot Available

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.16	0.05 - 0.64	0.16

(760)

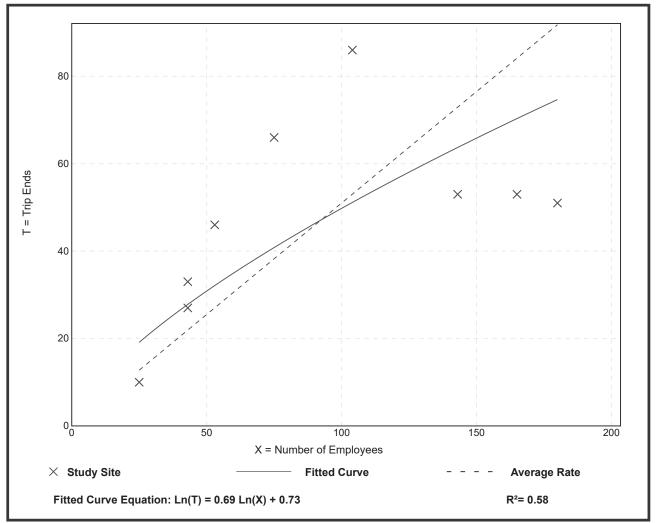

Vehicle Trip Ends vs: Employees On a: Weekday

Setting/Location:	General Urban/Suburban
Number of Studies:	21

Number of Studies.	Z
Avg. Num. of Employees:	658
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per Employee

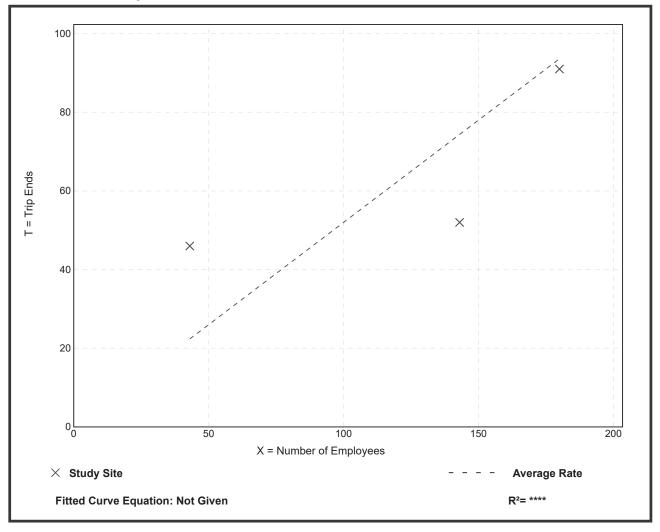
Average Rate	Range of Rates	Standard Deviation
3.29	1.60 - 10.63	1.34



On a	 Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location	: General Urban/Suburban
Number of Studies	s: 9
Avg. Num. of Employees	s: 92
Directional Distribution	n: 72% entering, 28% exiting

Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.51	0.28 - 0.88	0.26

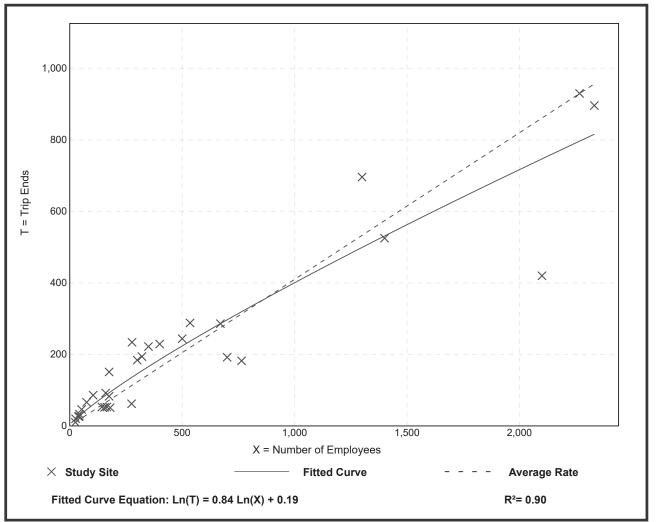

Vehicle Trip Ends vs On a	Employees Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location	General Urban/Suburban
Number of Studies	3
Avg. Num. of Employees	122
Directional Distribution	14% entering, 86% exiting

Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.52	0.36 - 1.07	0.88

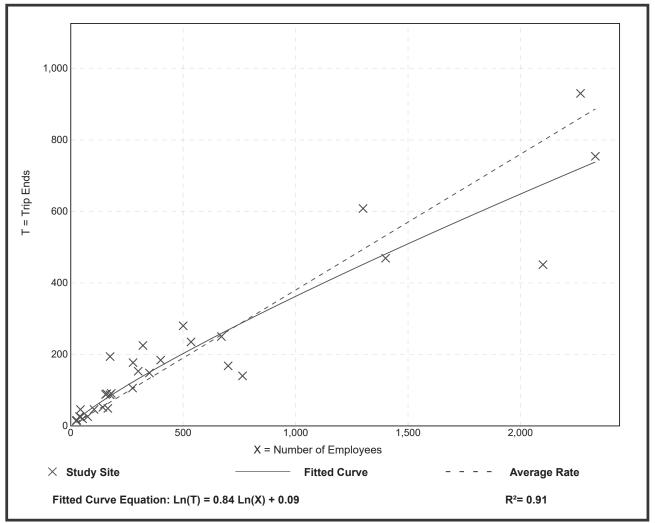
Data Plot and Equation

Caution – Small Sample Size



Vehicle Trip Ends vs: On a:	Employees Weekday, AM Peak Hour of Generator
Setting/Location:	General Urban/Suburban
Number of Studies:	31
Avg. Num. of Employees:	518
Directional Distribution:	85% entering, 15% exiting

Vehicle Trip Generation per Employee

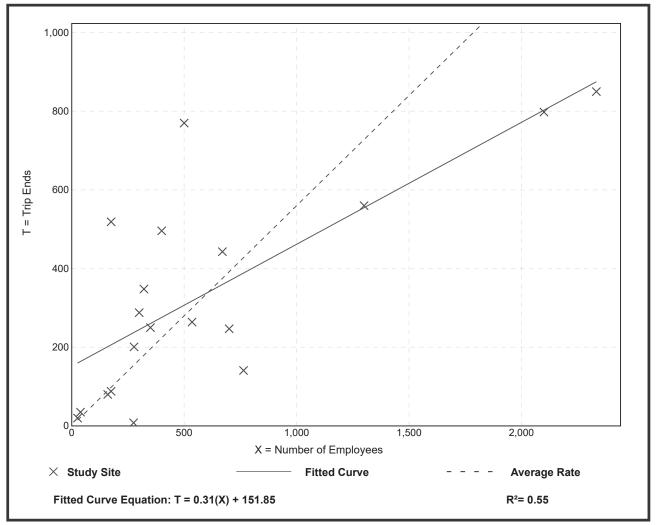

Average Rate	Range of Rates	Standard Deviation
0.41	0.20 - 0.88	0.16

Vehicle Trip Ends vs: On a:	Employees Weekday, PM Peak Hour of Generator
Setting/Location:	General Urban/Suburban
Number of Studies:	31
Avg. Num. of Employees:	518
Directional Distribution:	11% entering, 89% exiting

Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.38	0.18 - 1.11	0.15

(760)


Vehicle Trip Ends vs: Employees On a: Saturday

Setting/Location:	General Urban/Suburban
Number of Studies:	19

Number of Oludies.	10
Avg. Num. of Employees:	600
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.56	0.03 - 2.97	0.46



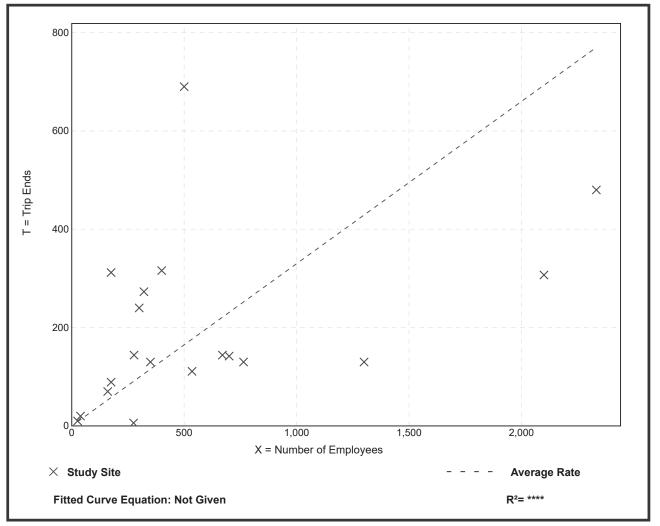
Vehicle Trip Ends vs:	Employees
On a:	Saturday, Peak Hour of Generator

Number of Studies:	12
Avg. Num. of Employees:	558
Directional Distribution:	Not Available

Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.06	0.01 - 0.30	0.05

(760)

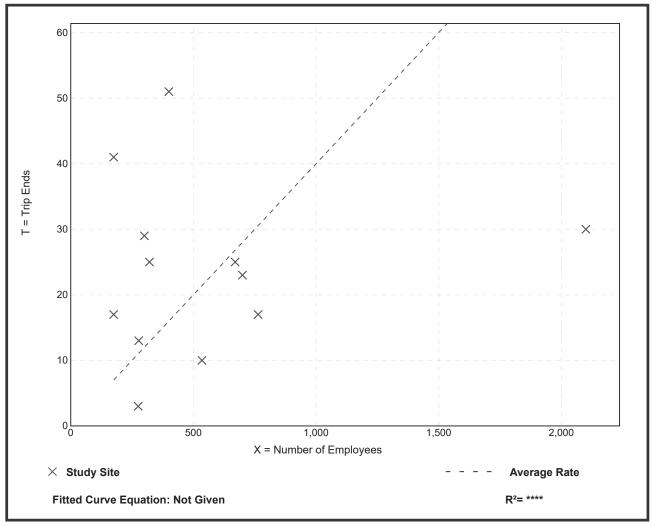

Vehicle Trip Ends vs: Employees On a: Sunday

Setting/Location:	General Urban/Suburban	
Number of Studies:	19	
Ava. Num. of Employees:	600	

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.33	0.02 - 1.78	0.36

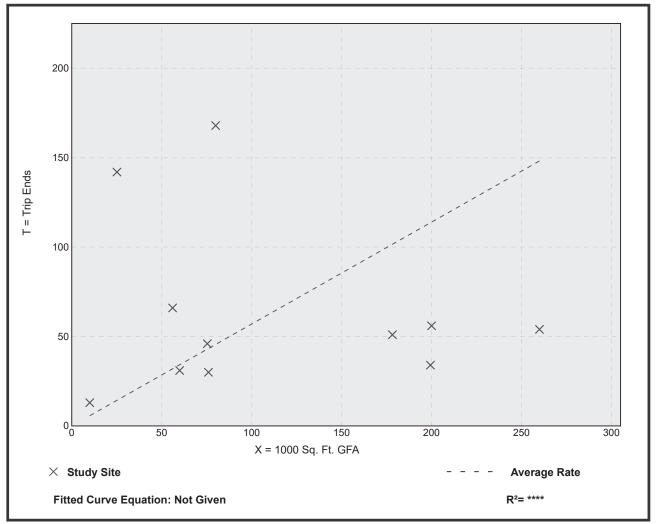


Vehicle Trip Ends vs:	Employees
On a:	Sunday, Peak Hour of Generator

Number of Studies:	12
Avg. Num. of Employees:	558
Directional Distribution:	Not Available

Vehicle Trip Generation per Employee

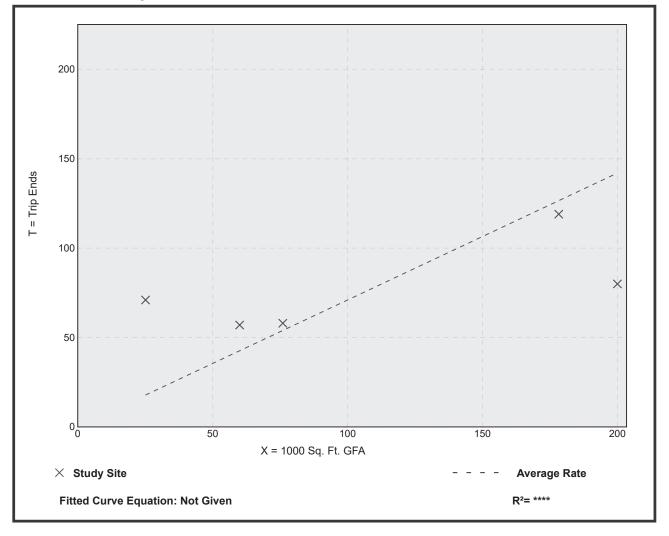
Average Rate	Range of Rates	Standard Deviation
0.04	0.01 - 0.23	0.05



Setting/Location:General Urban/SuburbanNumber of Studies:111000 Sq. Ft. GFA:111Directional Distribution:74% entering, 26% exiting	Person Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
1000 Sq. Ft. GFA: 111	Setting/Location:	General Urban/Suburban
	Number of Studies:	11
Directional Distribution: 74% entering, 26% exiting	1000 Sq. Ft. GFA:	111
	Directional Distribution:	74% entering, 26% exiting

Person Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.57	0.17 - 5.65	0.93

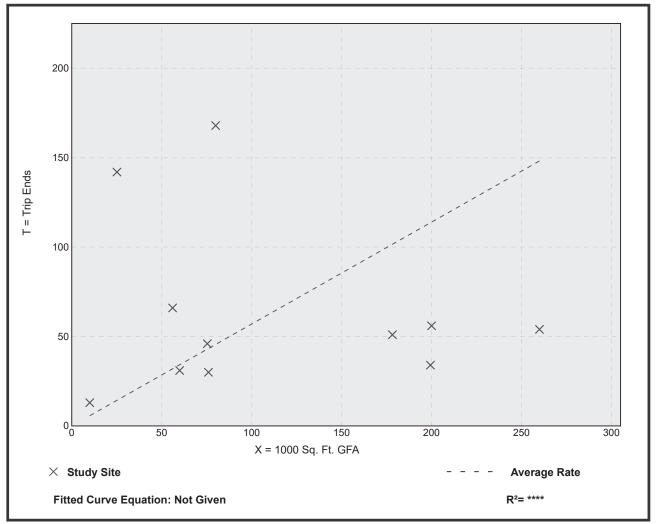

Person Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	5
1000 Sq. Ft. GFA:	108
Directional Distribution:	15% entering, 85% exiting

Person Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.71	0.40 - 2.83	0.56

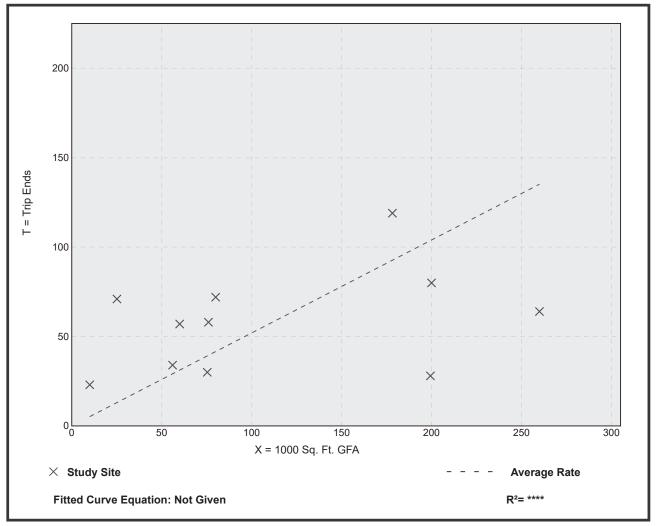
Data Plot and Equation

Caution – Small Sample Size



Person Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, AM Peak Hour of Generator
Number of Studies:	
1000 Sq. Ft. GFA: Directional Distribution:	111 74% entering, 26% exiting

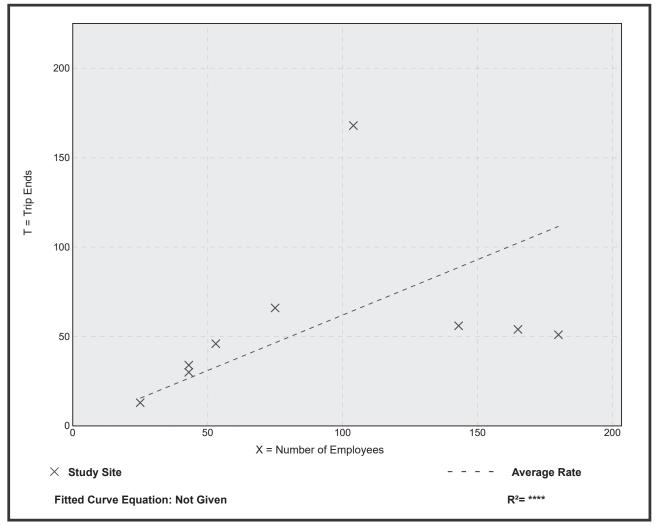
Person Trip Generation per 1000 Sq. Ft. GFA


Average Rate	Range of Rates	Standard Deviation
0.57	0.17 - 5.65	0.93

Person Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, PM Peak Hour of Generator
Number of Studies:	
1000 Sq. Ft. GFA: Directional Distribution:	111 30% entering, 70% exiting

Person Trip Generation per 1000 Sq. Ft. GFA

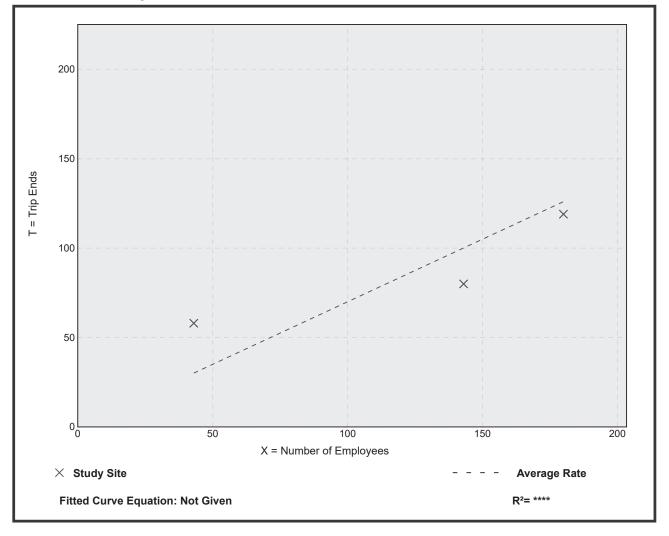
Average Rate	Range of Rates	Standard Deviation
0.52	0.14 - 2.83	0.47



On a:	Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	9
Avg. Num. of Employees:	92
Directional Distribution:	69% entering, 31% exiting

Person Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.62	0.28 - 1.62	0.46

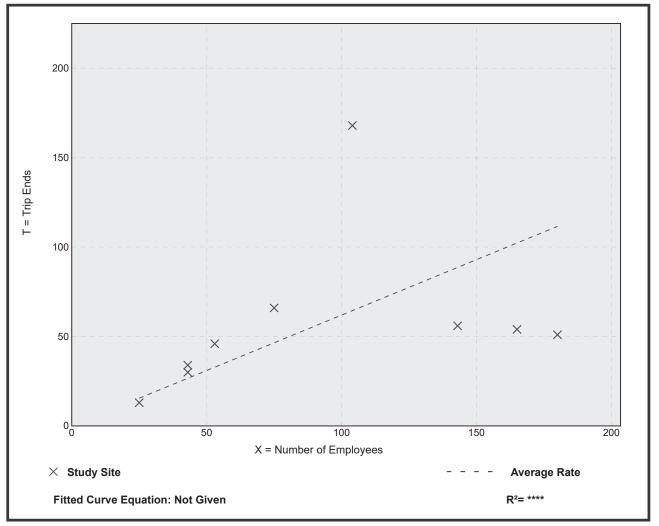

Person Trip Ends vs: On a:	Employees Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	3
Avg. Num. of Employees:	122
Directional Distribution:	14% entering, 86% exiting

Person Trip Generation per Employee

Average Rate	Range of Rates	Standard Deviation
0.70	0.56 - 1.35	1.13

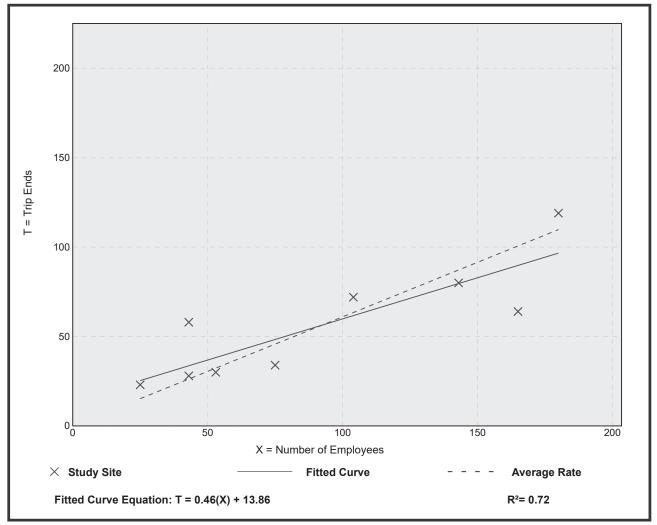
Data Plot and Equation

Caution – Small Sample Size



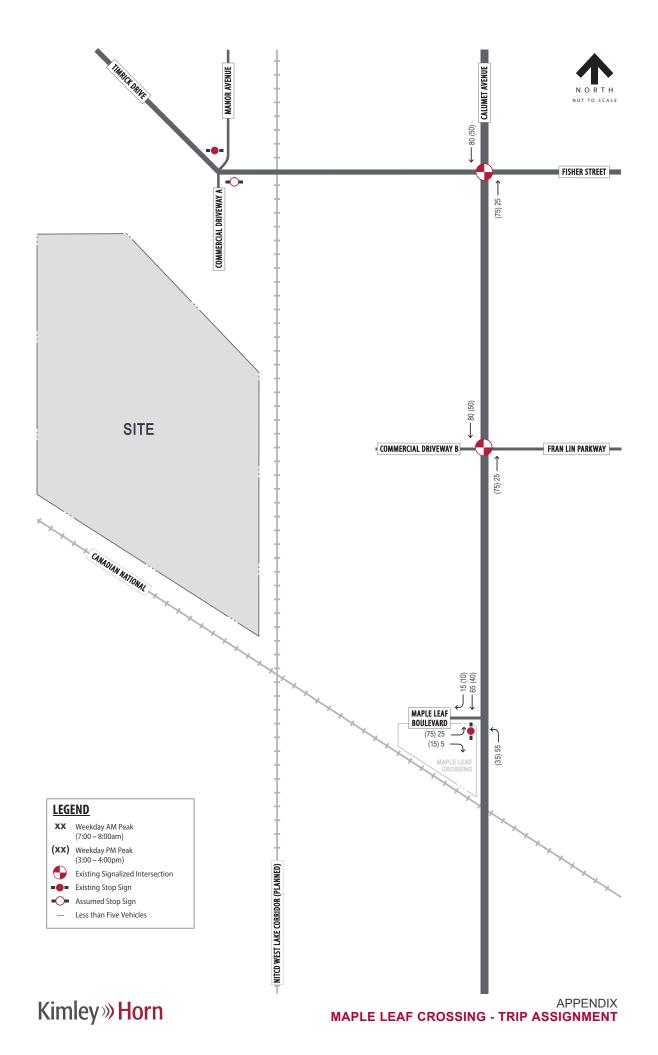
Person Trip Ends vs: On a:	Employees Weekday, AM Peak Hour of Generator
Setting/Location:	General Urban/Suburban
Number of Studies:	9
Avg. Num. of Employees:	92
Directional Distribution:	69% entering, 31% exiting

Person Trip Generation per Employee


Average Rate	Range of Rates	Standard Deviation
0.62	0.28 - 1.62	0.46

Person Trip Ends vs: On a:	Employees Weekday, PM Peak Hour of Generator
Setting/Location:	General Urban/Suburban
Number of Studies:	9
Avg. Num. of Employees:	92
Directional Distribution:	34% entering, 66% exiting

Person Trip Generation per Employee


Average Rate	Range of Rates	Standard Deviation
0.61	0.39 - 1.35	0.23

Kimley **Whorn**

MAPLE LEAF CROSSING TRIP ASSIGNMENT

Kimley **»Horn**

EXISTING (2020) CAPACITY REPORTS

Weekday Morning Peak Hour

Weekday Evening Peak Hour

Intersection

Int Delay, s/veh

3.4

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	5	295	1	15	160	20	1	1	5	110	1	5
Future Vol, veh/h	5	295	1	15	160	20	1	1	5	110	1	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	321	1	16	174	22	1	1	5	120	1	5

Major/Minor	Major1		1	Major2			Minor1				Minor2	Minor2
Conflicting Flow All	196	0	0	322	0	0	552	560	322)	. 552	2 552 549
Stage 1	-	-	-	-	-	-	332	332	-		217	217 217
Stage 2	-	-	-	-	-	-	220	228	-		335	335 332
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22		7.12	7.12 6.52
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-		6.12	6.12 5.52
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-		6.12	6.12 5.52
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3	.518	.518 4.018
Pot Cap-1 Maneuver	1377	-	-	1238	-	-	444	437	719		444	444 443
Stage 1	-	-	-	-	-	-	681	644	-	78	35	35 723
Stage 2	-	-	-	-	-	-	782	715	-	67	9	9 644
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1377	-	-	1238	-	-	434	429	719	433		435
Mov Cap-2 Maneuver		-	-	-	-	-	434	429	-	433		435
Stage 1	-	-	-	-	-	-	678	641	-	782		712
Stage 2	-	-	-	-	-	-	764	704	-	670		641
, , , , , , , , , , , , , , , , , , ,												
Approach	EB			WB			NB			SB		
HCM Control Delay, s				0.6			11			16.4		
HCM LOS							В			С		
Minor Lane/Major Mvn	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (yeh/h)		604	1277			1020			110			

	NDLIII	LDL	LDI		VVD1	WDIX ODLITT	
Capacity (veh/h)	604	1377	-	- 1238	-	- 442	
HCM Lane V/C Ratio	0.013	0.004	-	- 0.013	-	- 0.285	
HCM Control Delay (s)	11	7.6	0	- 7.9	0	- 16.4	
HCM Lane LOS	В	А	А	- A	А	- C	
HCM 95th %tile Q(veh)	0	0	-	- 0	-	- 1.2	

HCM 6th Signalized Intersection Summary 200: Calumet Avenue & Fisher Street

	۶	+	*	4	ł	*	<	1	1	×	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ef 👘		<u>۲</u>	ef 👘		ሻ	∱ ⊅		ሻ	∱1 ≱	
Traffic Volume (veh/h)	105	175	130	70	40	130	125	1050	275	290	785	30
Future Volume (veh/h)	105	175	130	70	40	130	125	1050	275	290	785	30
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	114	190	141	76	43	141	136	1141	299	315	853	33
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	309	212	157	197	78	255	399	1323	343	266	1720	67
Arrive On Green	0.06	0.21	0.21	0.05	0.20	0.20	0.06	0.47	0.47	0.08	0.49	0.49
Sat Flow, veh/h	1781	997	740	1781	384	1260	1781	2793	724	1781	3488	135
Grp Volume(v), veh/h	114	0	331	76	0	184	136	722	718	315	435	451
Grp Sat Flow(s),veh/h/ln	1781	0	1737	1781	0	1644	1781	1777	1740	1781	1777	1846
Q Serve(g_s), s	4.4	0.0	16.0	2.9	0.0	8.7	3.3	31.1	32.0	7.0	14.2	14.2
Cycle Q Clear(g_c), s	4.4	0.0	16.0	2.9	0.0	8.7	3.3	31.1	32.0	7.0	14.2	14.2
Prop In Lane	1.00		0.43	1.00		0.77	1.00		0.42	1.00		0.07
Lane Grp Cap(c), veh/h	309	0	370	197	0	333	399	842	824	266	876	910
V/C Ratio(X)	0.37	0.00	0.90	0.39	0.00	0.55	0.34	0.86	0.87	1.18	0.50	0.50
Avail Cap(c_a), veh/h	309	0	402	236	0	399	598	842	824	266	876	910
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	25.8	0.0	33.1	26.8	0.0	31.0	11.3	20.2	20.4	19.9	14.7	14.7
Incr Delay (d2), s/veh	0.7	0.0	20.9	1.2	0.0	1.4	0.5	11.0	12.2	114.7	2.0	1.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/In	3.3	0.0	13.4	2.2	0.0	6.2	2.2	20.3	20.7	17.2	9.6	9.9
Unsig. Movement Delay, s/veh			- 4 0	00.4	0.0	00.4		0 4 4		101.0	10 7	10.0
LnGrp Delay(d),s/veh	26.5	0.0	54.0	28.1	0.0	32.4	11.8	31.1	32.6	134.6	16.7	16.6
LnGrp LOS	С	A	D	С	<u>A</u>	С	В	С	С	F	B	B
Approach Vol, veh/h		445			260			1576			1201	
Approach Delay, s/veh		47.0			31.1			30.1			47.6	
Approach LOS		D			С			С			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.0	45.0	8.1	22.4	9.3	46.7	9.0	21.5				
Change Period (Y+Rc), s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0				
Max Green Setting (Gmax), s	7.0	41.0	6.0	20.0	15.0	33.0	5.0	21.0				
Max Q Clear Time (g_c+I1), s	9.0	34.0	4.9	18.0	5.3	16.2	6.4	10.7				
Green Ext Time (p_c), s	0.0	4.8	0.0	0.4	0.2	5.1	0.0	0.7				
Intersection Summary												
HCM 6th Ctrl Delay			38.4									
HCM 6th LOS			D									

	۶	→	\mathbf{i}	4	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4Î		۲	¢Î		۲.	tβ		۲	A⊅	
Traffic Volume (veh/h)	105	175	130	70	40	130	125	1050	275	290	785	30
Future Volume (veh/h)	105	175	130	70	40	130	125	1050	275	290	785	30
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj (A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Lanes Open During Work Zone)											
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	114	190	141	76	43	141	136	1141	299	315	853	33
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Opposing Right Turn Influence	Yes			Yes			Yes			Yes		
Cap, veh/h	309	212	157	197	78	255	399	1323	343	266	1720	67
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Prop Arrive On Green	0.06	0.21	0.21	0.05	0.20	0.20	0.06	0.47	0.47	0.08	0.49	0.49
Unsig. Movement Delay												
Ln Grp Delay, s/veh	26.5	0.0	54.0	28.1	0.0	32.4	11.8	31.1	32.6	134.6	16.7	16.6
Ln Grp LOS	С	А	D	С	А	С	В	С	С	F	В	В
Approach Vol, veh/h		445			260			1576			1201	
Approach Delay, s/veh		47.0			31.1			30.1			47.6	
Approach LOS		D			С			С			D	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2	3	4	5	6	7	8			
Case No		1.1	4.0	1.1	4.0	1.1	4.0	1.1	4.0			
Phs Duration (G+Y+Rc), s		11.0	45.0	8.1	22.4	9.3	46.7	9.0	21.5			
Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0			
Max Green (Gmax), s		7.0	41.0	6.0	20.0	15.0	33.0	5.0	21.0			
Max Allow Headway (MAH), s		3.8	5.2	3.8	5.3	3.8	5.1	3.8	5.4			
Max Q Clear (g_c+l1), s		9.0	34.0	4.9	18.0	5.3	16.2	6.4	10.7			
Green Ext Time (g_e), s		0.0	4.8	0.0	0.4	0.2	5.1	0.0	0.7			
Prob of Phs Call (p_c)		1.00	1.00	0.84	1.00	0.96	1.00	0.94	1.00			
Prob of Max Out (p_x)		1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.08			
Left-Turn Movement Data												
Assigned Mvmt		1		3		5		7				
Mvmt Sat Flow, veh/h		1781		1781		1781		1781				
Through Movement Data												
Assigned Mvmt			2		4		6		8			
Mvmt Sat Flow, veh/h			2793		997		3488		384			
Right-Turn Movement Data												
Assigned Mvmt			12		14		16		18			
Mvmt Sat Flow, veh/h			724		740		135		1260			
Left Lane Group Data												
Assigned Mvmt		1	0	3	0	5	0	7	0			
Lane Assignment		(Pr/Pm)	-	(Pr/Pm)		(Pr/Pm)		Pr/Pm)	Ű.			
	-		-		-		- (,				

Existing (2019) Traffic Volumes 7:00 am 09/21/2020 AM Peak Hour KHA

HCM 6th Signalized Intersection Capacity Analysis 200: Calumet Avenue & Fisher Street

09/21/2020

		-		-		-		-	
Lanes in Grp	1	0	1	0	1	0	1	0	
Grp Vol (v), veh/h	315	0	76	0	136	0	114	0	
Grp Sat Flow (s), veh/h/ln	1781	0	1781	0	1781	0	1781	0	
Q Serve Time (g_s), s	7.0	0.0	2.9	0.0	3.3	0.0	4.4	0.0	
Cycle Q Clear Time (g_c), s	7.0	0.0	2.9	0.0	3.3	0.0	4.4	0.0	
Perm LT Sat Flow (s_l), veh/h/ln	371	0	1049	0	627	0	1200	0	
Shared LT Sat Flow (s_sh), veh/h/ln	0	0	0	0	0	0	0	0	
Perm LT Eff Green (g_p), s	41.0	0.0	17.5	0.0	41.0	0.0	17.5	0.0	
Perm LT Serve Time (g_u), s	9.0	0.0	2.4	0.0	28.5	0.0	8.8	0.0	
Perm LT Q Serve Time (g_ps), s	9.0	0.0	1.2	0.0	3.5	0.0	0.9	0.0	
Time to First Blk (g_f), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Serve Time pre Blk (g_fs), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop LT Inside Lane (P_L)	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	
Lane Grp Cap (c), veh/h	266	0	197	0	399	0	309	0	
V/C Ratio (X)	1.18	0.00	0.39	0.00	0.34	0.00	0.37	0.00	
Avail Cap (c_a), veh/h	266	0	236	0	598	0	309	0	
Upstream Filter (I)	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	
Uniform Delay (d1), s/veh	19.9	0.0	26.8	0.0	11.3	0.0	25.8	0.0	
Incr Delay (d2), s/veh	114.7	0.0	1.2	0.0	0.5	0.0	0.7	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	134.6	0.0	28.1	0.0	11.8	0.0	26.5	0.0	
1st-Term Q (Q1), veh/In	2.4	0.0	1.2	0.0	1.2	0.0	1.8	0.0	
2nd-Term Q (Q2), veh/In	8.5	0.0	0.1	0.0	0.1	0.0	0.1	0.0	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	1.59	0.00	1.80	0.00	1.80	0.00	1.80	0.00	
%ile Back of Q (95%), veh/In	17.2	0.0	2.2	0.0	2.2	0.0	3.3	0.0	
%ile Storage Ratio (RQ%)	2.91	0.00	0.41	0.00	0.13	0.00	0.35	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	12.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
. ,									
Middle Lane Group Data	0		^	4		^		0	
Assigned Mvmt	0	2	0	4	0	6	0	8	
Lane Assignment	^	T	^	^	^	T	0	^	
Lanes in Grp	0	1	0	0	0	1	0	0	
Grp Vol (v), veh/h	0	722	0	0	0	435	0	0	
Grp Sat Flow (s), veh/h/ln	0	1777	0	0	0	1777	0	0	
Q Serve Time (g_s), s	0.0	31.1	0.0	0.0	0.0	14.2	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	31.1	0.0	0.0	0.0	14.2	0.0	0.0	
Lane Grp Cap (c), veh/h	0	842	0	0	0	876	0	0	
V/C Ratio (X)	0.00	0.86	0.00	0.00	0.00	0.50	0.00	0.00	
Avail Cap (c_a), veh/h	0	842	0	0	0	876	0	0	
Upstream Filter (I)	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	20.2	0.0	0.0	0.0	14.7	0.0	0.0	
Incr Delay (d2), s/veh	0.0	11.0	0.0	0.0	0.0	2.0	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	31.1	0.0	0.0	0.0	16.7	0.0	0.0	
1st-Term Q (Q1), veh/In	0.0	11.6	0.0	0.0	0.0	5.2	0.0	0.0	
2nd-Term Q (Q2), veh/ln	0.0	2.6	0.0	0.0	0.0	0.5	0.0	0.0	

Existing (2019) Traffic Volumes 7:00 am 09/21/2020 AM Peak Hour KHA

HCM 6th Signalized Intersection Capacity Analysis 200: Calumet Avenue & Fisher Street

09/21/2020

3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.44	0.00	1.00	0.00	1.69	0.00	1.00	
%ile Back of Q (95%), veh/ln	0.0	20.3	0.0	0.0	0.0	9.6	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.52	0.00	0.00	0.00	0.07	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
					0.0		0.0		
Right Lane Group Data		40		4.4		40	0	40	
Assigned Mvmt	0	12	0	14	0	16	0	18	
Lane Assignment		T+R	^	T+R	^	T+R	^	T+R	
Lanes in Grp	0	1	0	1	0	1	0	1	
Grp Vol (v), veh/h	0	718	0	331	0	451	0	184	
Grp Sat Flow (s), veh/h/ln	0	1740	0	1737	0	1846	0	1644	
Q Serve Time (g_s), s	0.0	32.0	0.0	16.0	0.0	14.2	0.0	8.7	
Cycle Q Clear Time (g_c), s	0.0	32.0	0.0	16.0	0.0	14.2	0.0	8.7	
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Eff Green (g_R), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop RT Outside Lane (P_R)	0.00	0.42	0.00	0.43	0.00	0.07	0.00	0.77	
Lane Grp Cap (c), veh/h	0	824	0	370	0	910	0	333	
V/C Ratio (X)	0.00	0.87	0.00	0.90	0.00	0.50	0.00	0.55	
Avail Cap (c_a), veh/h	0	824	0	402	0	910	0	399	
Upstream Filter (I)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
Uniform Delay (d1), s/veh	0.0	20.4	0.0	33.1	0.0	14.7	0.0	31.0	
Incr Delay (d2), s/veh	0.0	12.2	0.0	20.9	0.0	1.9	0.0	1.4	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	32.6	0.0	54.0	0.0	16.6	0.0	32.4	
1st-Term Q (Q1), veh/In	0.0	11.7	0.0	6.5	0.0	5.4	0.0	3.3	
2nd-Term Q (Q2), veh/ln	0.0	2.8	0.0	2.1	0.0	0.5	0.0	0.1	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.43	0.00	1.56	0.00	1.67	0.00	1.80	
%ile Back of Q (95%), veh/ln	0.0	20.7	0.0	13.4	0.0	9.9	0.0	6.2	
%ile Storage Ratio (RQ%)	0.00	0.53	0.00	0.12	0.00	0.07	0.00	0.04	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summary									
HCM 6th Ctrl Delay		38.4							
HCM 6th LOS		D							

09/21/2020

メッシュー イイ インシナイ

			•	•			•	•	•		•		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		्रभ	1	ሻ	1 2		ኘ	_ ≜ î≽		٦	_ ≜ î≽		
Traffic Volume (veh/h)	25	10	15	150	35	180	30	1315	335	60	800	20	
Future Volume (veh/h)	25	10	15	150	35	180	30	1315	335	60	800	20	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	27	11	16	163	38	196	33	1429	364	65	870	22	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	133	40	107	275	50	258	59	1687	417	89	2174	55	
Arrive On Green	0.07	0.07	0.07	0.07	0.19	0.19	0.03	0.60	0.60	0.05	0.61	0.61	
Sat Flow, veh/h	727	588	1585	1781	264	1361	1781	2824	698	1781	3542	90	
Grp Volume(v), veh/h	38	0	16	163	0	234	33	883	910	65	436	456	
Grp Sat Flow(s), veh/h/ln		Ũ	1585	1781	0	1625	1781	1777	1745	1781	1777	1854	
Q Serve(g_s), s	1.0	0.0	0.7	5.0	0.0	10.0	1.3	29.3	32.4	2.7	9.3	9.3	
Cycle Q Clear(g_c), s	2.0	0.0	0.7	5.0	0.0	10.0	1.3	29.3	32.4	2.7	9.3	9.3	
Prop In Lane	0.71	0.0	1.00	1.00	0.0	0.84	1.00	20.0	0.40	1.00	0.0	0.05	
Lane Grp Cap(c), veh/h		0	107	275	0	309	59	1061	1042	89	1091	1138	
V/C Ratio(X)	0.22	0.00	0.15	0.59	0.00	0.76	0.56	0.83	0.87	0.73	0.40	0.40	
Avail Cap(c_a), veh/h	418	0.00	409	275	0.00	618	145	1061	1042	145	1091	1138	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh		0.00	32.3	29.3	0.0	28.2	35.1	11.9	12.5	34.5	7.3	7.3	
Incr Delay (d2), s/veh	0.6	0.0	0.6	3.4	0.0	3.8	7.9	7.6	10.1	10.9	1.1	1.1	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh		0.0	0.0	5.4	0.0	7.3	1.2	16.7	18.5	2.5	5.6	5.8	
()·			0.5	0.4	0.0	1.5	Ι.Ζ	10.7	10.0	2.0	5.0	5.0	
Unsig. Movement Delay			22 A	20.7	0.0	32.1	12 0	10 E	22.6	15 1	0 /	8.3	
LnGrp Delay(d),s/veh	33.5	0.0	33.0	32.7	0.0		43.0	19.5		45.4	8.4		
LnGrp LOS	С	A	С	С	A	С	D	B	С	D	A	A	
Approach Vol, veh/h		54			397			1826			957		
Approach Delay, s/veh		33.3			32.3			21.5			10.9		
Approach LOS		С			С			С			В		
Timer - Assigned Phs	1	2	3	4	5	6		8					
Phs Duration (G+Y+Rc)	. s7.7	48.0	9.0	9.0	6.5	49.2		18.0					
Change Period (Y+Rc),		4.0	4.0	4.0	4.0	4.0		4.0					
Max Green Setting (Gma		44.0	5.0	19.0	6.0	44.0		28.0					
Max Q Clear Time (g c+		34.4	7.0	4.0	3.3	11.3		12.0					
Green Ext Time (p_c), s	<i>,</i> .	7.6	0.0	0.2	0.0	6.3		1.3					
. ,					2.5	2.0							
Intersection Summary			40.0										
HCM 6th Ctrl Delay			19.9										
HCM 6th LOS			В										

HCM 6th Signalized Intersection Capacity Analysis
400: Calumet Avenue & Commercial Driveway B/Fran Lin Parkway

09/21/2020

	۶	-	\mathbf{F}	4	+	×	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1	5	4		7	A		٦	A	
Traffic Volume (veh/h)	25	10	15	150	35	180	30	1315	335	60	800	20
Future Volume (veh/h)	25	10	15	150	35	180	30	1315	335	60	800	20
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj (A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Lanes Open During Work Zone												
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	27	11	16	163	38	196	33	1429	364	65	870	22
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Opposing Right Turn Influence	Yes			Yes			Yes			Yes		
Cap, veh/h	133	40	107	275	50	258	59	1687	417	89	2174	55
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Prop Arrive On Green	0.07	0.07	0.07	0.07	0.19	0.19	0.03	0.60	0.60	0.05	0.61	0.61
Unsig. Movement Delay												
Ln Grp Delay, s/veh	33.5	0.0	33.0	32.7	0.0	32.1	43.0	19.5	22.6	45.4	8.4	8.3
Ln Grp LOS	С	А	С	С	А	С	D	В	С	D	А	А
Approach Vol, veh/h		54			397			1826			957	
Approach Delay, s/veh		33.3			32.3			21.5			10.9	
Approach LOS		С			С			С			В	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2	3	4	5	6		8			
Case No		2.0	4.0	1.2	7.3	2.0	4.0		4.0			
Phs Duration (G+Y+Rc), s		7.7	48.0	9.0	9.0	6.5	49.2		18.0			
Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	4.0	4.0		4.0			
Max Green (Gmax), s		6.0	44.0	5.0	19.0	6.0	44.0		28.0			
Max Allow Headway (MAH), s		3.8	5.2	3.8	5.3	3.8	5.1		5.5			
Max Q Clear (g_c+l1), s		4.7	34.4	7.0	4.0	3.3	11.3		12.0			
Green Ext Time (g_e), s		0.0	7.6	0.0	0.2	0.0	6.3		1.3			
Prob of Phs Call (p_c)		0.74	1.00	0.96	1.00	0.49	1.00		1.00			
Prob of Max Out (p_x)		1.00	0.00	1.00	0.00	1.00	0.00		0.01			
Left-Turn Movement Data												
Assigned Mvmt		1		3	7	5						
Mvmt Sat Flow, veh/h		1781		1781	727	1781						
Through Movement Data												
Assigned Mvmt			2		4		6		8			
Mvmt Sat Flow, veh/h			2824		588		3542		264			
Right-Turn Movement Data												
Assigned Mvmt			12		14		16		18			
Mvmt Sat Flow, veh/h			698		1585		90		1361			
Left Lane Group Data												
Assigned Mvmt		1	0	3	7	5	0	0	0			
Lane Assignment		L (Prot)		(Pr/Pm)		L (Prot)						
.		1 - 7	_			1 - 7						

Existing (2019) Traffic Volumes 7:00 am 09/21/2020 AM Peak Hour KHA

09/21/2020

				/			-		
Lanes in Grp	1	0	1	1	1	0	0	0	
Grp Vol (v), veh/h	65	0	163	38	33	0	0	0	
Grp Sat Flow (s), veh/h/ln	1781	0	1781	1314	1781	0	0	0	
Q Serve Time (g_s), s	2.7	0.0	5.0	1.0	1.3	0.0	0.0	0.0	
Cycle Q Clear Time (g_c), s	2.7	0.0	5.0	2.0	1.3	0.0	0.0	0.0	
Perm LT Sat Flow (s_l), veh/h/ln	0	0	1383	1165	0	0	0	0	
Shared LT Sat Flow (s_sh), veh/h/ln	0	0	0	0	0	0	0	0	
Perm LT Eff Green (g_p), s	0.0	0.0	7.0	5.0	0.0	0.0	0.0	0.0	
Perm LT Serve Time (g_u), s	0.0	0.0	3.0	3.9	0.0	0.0	0.0	0.0	
Perm LT Q Serve Time (g_ps), s	0.0	0.0	2.1	1.0	0.0	0.0	0.0	0.0	
Time to First Blk (g_f), s	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	
Serve Time pre Blk (g_fs), s	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	
Prop LT Inside Lane (P_L)	1.00	0.00	1.00	0.71	1.00	0.00	0.00	0.00	
Lane Grp Cap (c), veh/h	89	0	275	173	59	0	0	0	
V/C Ratio (X)	0.73	0.00	0.59	0.22	0.56	0.00	0.00	0.00	
Avail Cap (c_a), veh/h	145	0.00	275	418	145	0.00	0.00	0.00	
Upstream Filter (I)	1.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	
Uniform Delay (d1), s/veh	34.5	0.00	29.3	32.9	35.1	0.00	0.00	0.00	
Incr Delay (d2), s/veh	10.9	0.0	3.4	0.6	7.9	0.0	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	45.4	0.0	32.7	33.5	43.0	0.0	0.0	0.0	
1st-Term Q (Q1), veh/ln	1.1	0.0	2.8	0.6	43.0	0.0	0.0	0.0	
2nd-Term Q (Q2), veh/ln	0.3	0.0	0.3	0.0	0.0	0.0	0.0	0.0	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	1.80	0.00	1.80	1.80	1.80	0.00	0.00	0.00	
%ile Back of Q (95%), veh/ln	2.5	0.00	5.4	1.00	1.00	0.00	0.00	0.00	
%ile Storage Ratio (RQ%)	0.31	0.00	2.76	0.16	0.22	0.00	0.0	0.00	
Initial Q (Qb), veh	0.01	0.00	0.0	0.10	0.22	0.00	0.00	0.00	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh Sat Cap (cs), veh/h	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Initial Q Clear Time (tc), h	0.0	0.0	0 0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Middle Lane Group Data									
Assigned Mvmt	0	2	0	4	0	6	0	8	
Lane Assignment		Т				Т			
Lanes in Grp	0	1	0	0	0	1	0	0	
Grp Vol (v), veh/h	0	883	0	0	0	436	0	0	
Grp Sat Flow (s), veh/h/ln	0	1777	0	0	0	1777	0	0	
Q Serve Time (g_s), s	0.0	29.3	0.0	0.0	0.0	9.3	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	29.3	0.0	0.0	0.0	9.3	0.0	0.0	
Lane Grp Cap (c), veh/h	0	1061	0	0	0	1091	0	0	
V/C Ratio (X)	0.00	0.83	0.00	0.00	0.00	0.40	0.00	0.00	
Avail Cap (c_a), veh/h	0	1061	0	0	0	1091	0	0	
Upstream Filter (I)	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	11.9	0.0	0.0	0.0	7.3	0.0	0.0	
Incr Delay (d2), s/veh	0.0	7.6	0.0	0.0	0.0	1.1	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	19.5	0.0	0.0	0.0	8.4	0.0	0.0	
1st-Term Q (Q1), veh/ln	0.0	9.0	0.0	0.0	0.0	2.8	0.0	0.0	
2nd-Term Q (Q2), veh/ln	0.0	2.2	0.0	0.0	0.0	0.3	0.0	0.0	
, , , , , , , , , , , , , , , , ,	0.0		0.0	0.0	0.0	0.0	0.0	5.0	

Existing (2019) Traffic Volumes 7:00 am 09/21/2020 AM Peak Hour KHA

09/21/2020

3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.49	0.00	1.00	0.00	1.80	0.00	1.00	
%ile Back of Q (95%), veh/ln	0.0	16.7	0.0	0.0	0.0	5.6	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.08	0.00	0.00	0.00	0.19	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
. ,	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data						- 10			
Assigned Mvmt	0	12	0	14	0	16	0	18	
Lane Assignment		T+R	_	R		T+R		T+R	
Lanes in Grp	0	1	0	1	0	1	0	1	
Grp Vol (v), veh/h	0	910	0	16	0	456	0	234	
Grp Sat Flow (s), veh/h/ln	0	1745	0	1585	0	1854	0	1625	
Q Serve Time (g_s), s	0.0	32.4	0.0	0.7	0.0	9.3	0.0	10.0	
Cycle Q Clear Time (g_c), s	0.0	32.4	0.0	0.7	0.0	9.3	0.0	10.0	
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Eff Green (g_R), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop RT Outside Lane (P_R)	0.00	0.40	0.00	1.00	0.00	0.05	0.00	0.84	
Lane Grp Cap (c), veh/h	0	1042	0	107	0	1138	0	309	
V/C Ratio (X)	0.00	0.87	0.00	0.15	0.00	0.40	0.00	0.76	
Avail Cap (c_a), veh/h	0	1042	0	409	0	1138	0	618	
Upstream Filter (I)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
Uniform Delay (d1), s/veh	0.0	12.5	0.0	32.3	0.0	7.3	0.0	28.2	
Incr Delay (d2), s/veh	0.0	10.1	0.0	0.6	0.0	1.1	0.0	3.8	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	22.6	0.0	33.0	0.0	8.3	0.0	32.1	
1st-Term Q (Q1), veh/ln	0.0	9.8	0.0	0.3	0.0	2.9	0.0	3.7	
2nd-Term Q (Q2), veh/In	0.0	2.9	0.0	0.0	0.0	0.3	0.0	0.3	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.46	0.00	1.80	0.00	1.80	0.00	1.80	
%ile Back of Q (95%), veh/ln	0.0	18.5	0.0	0.5	0.0	5.8	0.0	7.3	
%ile Storage Ratio (RQ%)	0.00	0.09	0.00	0.07	0.00	0.20	0.00	0.25	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Intersection Summary		40.0							
HCM 6th Ctrl Delay		19.9							
HCM 6th LOS		В							

Intersection

Int Delay, s/veh

1.2

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	l
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	20	275	1	5	320	155	1	1	1	35	1	5	
Future Vol, veh/h	20	275	1	5	320	155	1	1	1	35	1	5	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	22	299	1	5	348	168	1	1	1	38	1	5	

Major/Minor N	Major1	-	Major2			Minor1			Minor2			
			300	0		789	870	300	787	786	432	
Conflicting Flow All	010) ()	200	0	0			300	442	442	43Z	
Stage 1	-		-	-	-	344	344	-			-	
Stage 2	-		-	-	-	445	526	-	345	344	-	
Critical Hdwy	4.12		4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-		-	-	-	6.12	5.52	-	6.12	5.52	-	
Critical Hdwy Stg 2	-		-	-	-	6.12	5.52	-	0.12	5.52	-	
, ,	2.218		2.218	-	-	0.010	4.018	3.318	3.518	4.018	3.318	
Pot Cap-1 Maneuver	1050		1261	-	-	308	290	740	309	324	624	
Stage 1	-		-	-	-	671	637	-	594	576	-	
Stage 2	-		-	-	-	592	529	-	671	637	-	
Platoon blocked, %				-	-							
Mov Cap-1 Maneuver	1050		1261	-	-	297	281	740	300	314	624	
Mov Cap-2 Maneuver	-		-	-	-	297	281	-	300	314	-	
Stage 1	-		-	-	-	654	621	-	579	573	-	
Stage 2	-		-	-	-	582	526	-	652	621	-	
-												
A I	50								00			
Approach	EB		WB			NB			SB			
HCM Control Delay, s	0.6		0.1			15			18			
HCM LOS						С			С			
Minor Lane/Major Mvm	t NBLn	1 EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)	36	2 1050	-	-	1261	-	-	321				
HCM Lane V/C Ratio	0.00		-		0.004	-	-	0.139				

HCIVI Lane V/C Ratio	0.009	0.021	-	- 0	.004	-	- (0.139
HCM Control Delay (s)	15	8.5	0	-	7.9	0	-	18
HCM Lane LOS	С	А	А	-	А	А	-	С
HCM 95th %tile Q(veh)	0	0.1	-	-	0	-	-	0.5

HCM 6th Signalized Intersection Summary 200: Calumet Avenue & Fisher Street

09/21/	2020
--------	------

	۶	+	*	4	ł	•	<	1	1	×	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	eî 👘		ሻ	ef 👘		ሻ	∱ î≽		ሻ	∱ }	
Traffic Volume (veh/h)	75	80	155	205	225	230	175	920	60	170	1075	80
Future Volume (veh/h)	75	80	155	205	225	230	175	920	60	170	1075	80
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	82	87	168	223	245	250	190	1000	65	185	1168	87
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	173	128	248	263	188	191	304	1577	102	349	1550	115
Arrive On Green	0.05	0.22	0.22	0.05	0.22	0.22	0.08	0.47	0.47	0.08	0.46	0.46
Sat Flow, veh/h	1781	570	1102	1781	849	866	1781	3387	220	1781	3353	249
Grp Volume(v), veh/h	82	0	255	223	0	495	190	524	541	185	618	637
Grp Sat Flow(s),veh/h/ln	1781	0	1672	1781	0	1714	1781	1777	1831	1781	1777	1825
Q Serve(g_s), s	3.0	0.0	12.0	4.0	0.0	19.0	4.7	19.2	19.2	4.6	24.7	24.7
Cycle Q Clear(g_c), s	3.0	0.0	12.0	4.0	0.0	19.0	4.7	19.2	19.2	4.6	24.7	24.7
Prop In Lane	1.00		0.66	1.00		0.51	1.00		0.12	1.00		0.14
Lane Grp Cap(c), veh/h	173	0	376	263	0	379	304	827	852	349	822	844
V/C Ratio(X)	0.47	0.00	0.68	0.85	0.00	1.31	0.63	0.63	0.63	0.53	0.75	0.75
Avail Cap(c_a), veh/h	208	0	409	263	0	379	430	827	852	398	822	844
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	26.0	0.0	30.5	33.6	0.0	33.5	16.2	17.4	17.4	13.4	19.0	19.1
Incr Delay (d2), s/veh	2.0	0.0	4.0	22.2	0.0	155.6	2.1	3.7	3.6	1.3	6.3	6.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	2.4	0.0	8.7	7.7	0.0	36.4	3.3	12.7	13.0	3.1	16.0	16.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	28.0	0.0	34.5	55.8	0.0	189.1	18.3	21.1	21.0	14.6	25.4	25.3
LnGrp LOS	С	А	С	E	Α	F	В	С	С	В	С	C
Approach Vol, veh/h		337			718			1255			1440	
Approach Delay, s/veh		32.9			147.7			20.6			23.9	
Approach LOS		С			F			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.6	44.0	8.0	23.3	10.9	43.7	8.3	23.0				
Change Period (Y+Rc), s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0				
Max Green Setting (Gmax), s	9.0	40.0	4.0	21.0	13.0	36.0	6.0	19.0				
Max Q Clear Time (g_c+I1), s	6.6	21.2	6.0	14.0	6.7	26.7	5.0	21.0				
Green Ext Time (p_c), s	0.1	6.7	0.0	0.8	0.3	5.3	0.0	0.0				
	•••											
Intersection Summary	•											
Intersection Summary HCM 6th Ctrl Delay			47.3									

	≯	→	\mathbf{r}	4	Ļ	•	•	†	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4Î		5	eî 👘		1	đβ		٦	At≱	
Traffic Volume (veh/h)	75	80	155	205	225	230	175	920	60	170	1075	80
Future Volume (veh/h)	75	80	155	205	225	230	175	920	60	170	1075	80
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj (A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Lanes Open During Work Zone	Э											
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	82	87	168	223	245	250	190	1000	65	185	1168	87
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Opposing Right Turn Influence				Yes			Yes			Yes		
Cap, veh/h	173	128	248	263	188	191	304	1577	102	349	1550	115
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Prop Arrive On Green	0.05	0.22	0.22	0.05	0.22	0.22	0.08	0.47	0.47	0.08	0.46	0.46
Unsig. Movement Delay												
Ln Grp Delay, s/veh	28.0	0.0	34.5	55.8	0.0	189.1	18.3	21.1	21.0	14.6	25.4	25.3
Ln Grp LOS	С	А	С	E	А	F	В	С	С	В	С	С
Approach Vol, veh/h		337			718			1255			1440	
Approach Delay, s/veh		32.9			147.7			20.6			23.9	
Approach LOS		С			F			С			С	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2	3	4	5	6	7	8			
Case No		1.1	4.0	1.1	4.0	1.1	4.0	1.1	4.0			
Phs Duration (G+Y+Rc), s		10.6	44.0	8.0	23.3	10.9	43.7	8.3	23.0			
Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0			
Max Green (Gmax), s		9.0	40.0	4.0	21.0	13.0	36.0	6.0	19.0			
Max Allow Headway (MAH), s		3.8	5.1	3.8	5.3	3.8	5.1	3.8	5.3			
Max Q Clear (g_c+l1), s		6.6	21.2	6.0	14.0	6.7	26.7	5.0	21.0			
Green Ext Time (g_e), s		0.1	6.7	0.0	0.8	0.3	5.3	0.0	0.0			
Prob of Phs Call (p_c)		0.99	1.00	1.00	1.00	0.99	1.00	0.86	1.00			
Prob of Max Out (p_x)		1.00	0.00	1.00	0.50	0.13	0.00	1.00	1.00			
Left-Turn Movement Data												
Assigned Mvmt		1		3		5		7				
Mvmt Sat Flow, veh/h		1781		1781		1781		1781				
Through Movement Data												
Assigned Mvmt			2		4		6		8			
Mvmt Sat Flow, veh/h			3387		570		3353		849			
Right-Turn Movement Data												
Assigned Mvmt			12		14		16		18			
Mvmt Sat Flow, veh/h			220		1102		249		866			
Left Lane Group Data												
Assigned Mvmt		1	0	3	0	5	0	7	0			
Lane Assignment	L	(Pr/Pm)	L	(Pr/Pm)	L	(Pr/Pm)	L (Pr/Pm)				
		. /				. /						

Existing (2019) Traffic Volumes 3:00 pm 09/21/2020 PM Peak Hour KHA

HCM 6th Signalized Intersection Capacity Analysis 200: Calumet Avenue & Fisher Street

09/21/2020

	4	0	4	0	4	0	4	0	
Lanes in Grp	1	0	1	0	1	0	1	0	
Grp Vol (v), veh/h	185	0	223	0	190	0	82	0	
Grp Sat Flow (s), veh/h/ln	1781	0	1781	0	1781	0	1781	0	
Q Serve Time (g_s), s	4.6	0.0	4.0	0.0	4.7	0.0	3.0	0.0	
Cycle Q Clear Time (g_c), s	4.6	0.0	4.0	0.0	4.7	0.0	3.0	0.0	
Perm LT Sat Flow (s_l), veh/h/ln	530	0	1125	0	442	0	902	0	
Shared LT Sat Flow (s_sh), veh/h/ln	0	0	0	0	0	0	0	0	
Perm LT Eff Green (g_p), s	39.7	0.0	19.0	0.0	39.7	0.0	19.0	0.0	
Perm LT Serve Time (g_u), s	20.8	0.0	7.3	0.0	15.0	0.0	0.0	0.0	
Perm LT Q Serve Time (g_ps), s	10.2	0.0	7.3	0.0	15.0	0.0	0.0	0.0	
Time to First Blk (g_f), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Serve Time pre Blk (g_fs), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop LT Inside Lane (P_L)	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	
Lane Grp Cap (c), veh/h	349	0	263	0	304	0	173	0	
V/C Ratio (X)	0.53	0.00	0.85	0.00	0.63	0.00	0.47	0.00	
Avail Cap (c_a), veh/h	398	0	263	0	430	0	208	0	
Upstream Filter (I)	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	
Uniform Delay (d1), s/veh	13.4	0.0	33.6	0.0	16.2	0.0	26.0	0.0	
Incr Delay (d2), s/veh	1.3	0.0	22.2	0.0	2.1	0.0	2.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	14.6	0.0	55.8	0.0	18.3	0.0	28.0	0.0	
1st-Term Q (Q1), veh/In	1.6	0.0	2.7	0.0	1.7	0.0	1.2	0.0	
2nd-Term Q (Q2), veh/In	0.1	0.0	1.6	0.0	0.2	0.0	0.1	0.0	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	1.80	0.00	1.79	0.00	1.80	0.00	1.80	0.00	
%ile Back of Q (95%), veh/ln	3.1	0.0	7.7	0.0	3.3	0.0	2.4	0.0	
%ile Storage Ratio (RQ%)	0.53	0.00	1.39	0.00	0.20	0.00	0.25	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Middle Lane Group Data		-	-	<u> </u>	-				
Assigned Mvmt	0	2	0	4	0	6	0	8	
Lane Assignment	_	Т				Т		_	
Lanes in Grp	0	1	0	0	0	1	0	0	
Grp Vol (v), veh/h	0	524	0	0	0	618	0	0	
Grp Sat Flow (s), veh/h/ln	0	1777	0	0	0	1777	0	0	
Q Serve Time (g_s), s	0.0	19.2	0.0	0.0	0.0	24.7	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	19.2	0.0	0.0	0.0	24.7	0.0	0.0	
Lane Grp Cap (c), veh/h	0	827	0	0	0	822	0	0	
V/C Ratio (X)	0.00	0.63	0.00	0.00	0.00	0.75	0.00	0.00	
Avail Cap (c_a), veh/h	0	827	0	0	0	822	0	0	
Upstream Filter (I)	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	17.4	0.0	0.0	0.0	19.0	0.0	0.0	
Incr Delay (d2), s/veh	0.0	3.7	0.0	0.0	0.0	6.3	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	21.1	0.0	0.0	0.0	25.4	0.0	0.0	
1st-Term Q (Q1), veh/In	0.0	7.2	0.0	0.0	0.0	9.2	0.0	0.0	
2nd-Term Q (Q2), veh/In	0.0	0.8	0.0	0.0	0.0	1.4	0.0	0.0	

Existing (2019) Traffic Volumes 3:00 pm 09/21/2020 PM Peak Hour KHA

HCM 6th Signalized Intersection Capacity Analysis 200: Calumet Avenue & Fisher Street

09/21/2020

3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.58	0.00	1.00	0.00	1.50	0.00	1.00	
%ile Back of Q (95%), veh/ln	0.0	12.7	0.0	0.0	0.0	16.0	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.32	0.00	0.00	0.00	0.12	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data									
Assigned Mvmt	0	12	0	14	0	16	0	18	
Lane Assignment		T+R		T+R		T+R		T+R	
Lanes in Grp	0	1	0	1	0	1	0	1	
Grp Vol (v), veh/h	0	541	0	255	0	637	0	495	
Grp Sat Flow (s), veh/h/ln	0	1831	0	1672	0	1825	0	1714	
Q Serve Time (g_s), s	0.0	19.2	0.0	12.0	0.0	24.7	0.0	19.0	
Cycle Q Clear Time (g_c), s	0.0	19.2	0.0	12.0	0.0	24.7	0.0	19.0	
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Eff Green (g_R), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop RT Outside Lane (P_R)	0.00	0.12	0.00	0.66	0.00	0.14	0.00	0.51	
Lane Grp Cap (c), veh/h	0	852	0	376	0	844	0	379	
V/C Ratio (X)	0.00	0.63	0.00	0.68	0.00	0.75	0.00	1.31	
Avail Cap (c_a), veh/h	0	852	0	409	0	844	0	379	
Upstream Filter (I)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
Uniform Delay (d1), s/veh	0.0	17.4	0.0	30.5	0.0	19.1	0.0	33.5	
Incr Delay (d2), s/veh	0.0	3.6	0.0	4.0	0.0	6.2	0.0	155.6	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	21.0	0.0	34.5	0.0	25.3	0.0	189.1	
1st-Term Q (Q1), veh/ln	0.0	7.4	0.0	4.6	0.0	9.5	0.0	7.5	
2nd-Term Q (Q2), veh/ln	0.0	0.8	0.0	0.4	0.0	1.5	0.0	16.4	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.57	0.00	1.73	0.00	1.50	0.00	1.52	
%ile Back of Q (95%), veh/ln	0.0	13.0	0.0	8.7	0.0	16.4	0.0	36.4	
%ile Storage Ratio (RQ%)	0.00	0.33	0.00	0.08	0.00	0.12	0.00	0.25	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summary									
HCM 6th Ctrl Delay		47.3							
HCM 6th LOS		D							

09/21/2020

ノッシュー くちょう トレントイ

M		FDT						NDT		001	ODT	000	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	05	र्भ	1	`	4	405	<u></u>	†	400	`	≜ †⊅	40	
Traffic Volume (veh/h)	25	35	55	330	35	135	40	980	120	240	1185	40	
Future Volume (veh/h)	25	35	55	330	35	135	40	980	120	240	1185	40	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	4 00	1.00	1.00	4.00	1.00	1.00	4.00	1.00	1.00	4.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	4070	4070	No	4070	4070	No	4070	4070	No	4070	
	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	27	38	60	359	38	147	43	1065	130	261	1288	43	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	104	75	112	375	86	334	70	1317	161	303	1908	64	
Arrive On Green	0.07	0.07	0.07	0.13	0.26	0.26	0.04	0.41	0.41	0.17	0.54	0.54	
Sat Flow, veh/h	517	1063	1585	1781	336	1300	1781	3188	389	1781	3509	117	
Grp Volume(v), veh/h	65	0	60	359	0	185	43	593	602	261	652	679	
Grp Sat Flow(s),veh/h/In		0	1585	1781	0	1636	1781	1777	1800	1781	1777	1849	
Q Serve(g_s), s	1.9	0.0	2.7	10.0	0.0	7.1	1.8	22.1	22.1	10.7	19.8	19.9	
Cycle Q Clear(g_c), s	2.9	0.0	2.7	10.0	0.0	7.1	1.8	22.1	22.1	10.7	19.8	19.9	
Prop In Lane	0.42	•	1.00	1.00	•	0.79	1.00		0.22	1.00		0.06	
Lane Grp Cap(c), veh/h		0	112	375	0	421	70	734	744	303	966	1005	
V/C Ratio(X)	0.36	0.00	0.54	0.96	0.00	0.44	0.61	0.81	0.81	0.86	0.67	0.68	
Avail Cap(c_a), veh/h	457	0	401	375	0	720	119	734	744	332	966	1005	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh		0.0	33.7	29.3	0.0	23.3	35.5	19.4	19.4	30.3	12.3	12.4	
Incr Delay (d2), s/veh	1.2	0.0	4.0	35.5	0.0	0.7	8.3	9.3	9.3	19.0	3.8	3.6	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh		0.0	2.1	8.9	0.0	4.9	1.6	15.2	15.4	9.9	12.1	12.5	
Unsig. Movement Delay			077	04.0	0.0	04.4	40.0	00 7	00 7	40.0	10.1	10.0	
LnGrp Delay(d),s/veh	34.9	0.0	37.7	64.8	0.0	24.1	43.8	28.7	28.7	49.2	16.1	16.0	
LnGrp LOS	С	A	D	E	A	С	D	С	С	D	B	В	
Approach Vol, veh/h		125			544			1238			1592		
Approach Delay, s/veh		36.2			50.9			29.2			21.5		
Approach LOS		D			D			С			С		
Timer - Assigned Phs	1	2	3	4	5	6		8					
Phs Duration (G+Y+Rc)	, 1 \$6.7	35.0	14.0	9.3	7.0	44.8		23.3					
Change Period (Y+Rc),		4.0	4.0	4.0	4.0	4.0		4.0					
Max Green Setting (Gm		31.0	10.0	19.0	5.0	40.0		33.0					
Max Q Clear Time (g c+		24.1	12.0	4.9	3.8	21.9		9.1					
Green Ext Time (p_c), s	<i>,</i> .	4.0	0.0	0.4	0.0	8.7		1.1					
Intersection Summary													
,			29.3										
HCM 6th Ctrl Delay			29.3 C										
HCM 6th LOS			U										

09/21/2020

	۶	-	*	4	ł	*	≺	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ę	1	۲	eî 👘		۲.	A		٦	At≱	
Traffic Volume (veh/h)	25	35	55	330	35	135	40	980	120	240	1185	40
Future Volume (veh/h)	25	35	55	330	35	135	40	980	120	240	1185	40
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj (A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Lanes Open During Work Zone	Э											
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	27	38	60	359	38	147	43	1065	130	261	1288	43
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Opposing Right Turn Influence	Yes			Yes			Yes			Yes		
Cap, veh/h	104	75	112	375	86	334	70	1317	161	303	1908	64
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Prop Arrive On Green	0.07	0.07	0.07	0.13	0.26	0.26	0.04	0.41	0.41	0.17	0.54	0.54
Unsig. Movement Delay												
Ln Grp Delay, s/veh	34.9	0.0	37.7	64.8	0.0	24.1	43.8	28.7	28.7	49.2	16.1	16.0
Ln Grp LOS	С	А	D	Е	А	С	D	С	С	D	В	В
Approach Vol, veh/h		125			544			1238			1592	
Approach Delay, s/veh		36.2			50.9			29.2			21.5	
Approach LOS		D			D			С			С	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2	3	4	5	6		8			
Case No		2.0	4.0	1.2	7.3	2.0	4.0		4.0			
Phs Duration (G+Y+Rc), s		16.7	35.0	14.0	9.3	7.0	44.8		23.3			
Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	4.0	4.0		4.0			
Max Green (Gmax), s		14.0	31.0	10.0	19.0	5.0	40.0		33.0			
Max Allow Headway (MAH), s		3.8	5.2	3.8	4.9	3.8	5.1		5.5			
Max Q Clear (g_c+l1), s		12.7	24.1	12.0	4.9	3.8	21.9		9.1			
Green Ext Time (g_e), s		0.1	4.0	0.0	0.4	0.0	8.7		1.1			
Prob of Phs Call (p_c)		1.00	1.00	1.00	1.00	0.59	1.00		1.00			
Prob of Max Out (p_x)		1.00	0.00	1.00	0.00	1.00	0.00		0.00			
Left-Turn Movement Data												
Assigned Mvmt		1		3	7	5						
Mvmt Sat Flow, veh/h		1781		1781	517	1781						
Through Movement Data												
Assigned Mvmt			2		4		6		8			
Mvmt Sat Flow, veh/h			3188		1063		3509		336			
Right-Turn Movement Data												
Assigned Mvmt			12		14		16		18			
Mvmt Sat Flow, veh/h			389		1585		117		1300			
Left Lane Group Data												
Assigned Mvmt		1	0	3	7	5	0	0	0			
Lane Assignment		L (Prot)	L	(Pr/Pm)	L+T	L (Prot)						

Existing (2019) Traffic Volumes 3:00 pm 09/21/2020 PM Peak Hour KHA

09/21/2020

				/			,		
Lanes in Grp	1	0	1	1	1	0	0	0	
Grp Vol (v), veh/h	261	0	359	65	43	0	0	0	
Grp Sat Flow (s), veh/h/ln	1781	0	1781	1580	1781	0	0	0	
Q Serve Time (g_s), s	10.7	0.0	10.0	1.9	1.8	0.0	0.0	0.0	
Cycle Q Clear Time (g_c), s	10.7	0.0	10.0	2.9	1.8	0.0	0.0	0.0	
Perm LT Sat Flow (s_l), veh/h/ln	0	0	1297	1218	0	0	0	0	
Shared LT Sat Flow (s_sh), veh/h/ln	0	0	0	0	0	0	0	0	
Perm LT Eff Green (g_p), s	0.0	0.0	7.3	5.3	0.0	0.0	0.0	0.0	
Perm LT Serve Time (g_u), s	0.0	0.0	2.4	5.3	0.0	0.0	0.0	0.0	
Perm LT Q Serve Time (g_ps), s	0.0	0.0	2.4	1.9	0.0	0.0	0.0	0.0	
Time to First Blk (g_f), s	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	
Serve Time pre Blk (g_fs), s	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	
Prop LT Inside Lane (P_L)	1.00	0.00	1.00	0.42	1.00	0.00	0.00	0.00	
Lane Grp Cap (c), veh/h	303	0	375	179	70	0	0	0	
V/C Ratio (X)	0.86	0.00	0.96	0.36	0.61	0.00	0.00	0.00	
Avail Cap (c_a), veh/h	332	0	375	457	119	0	0	0	
Upstream Filter (I)	1.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	
Uniform Delay (d1), s/veh	30.3	0.0	29.3	33.7	35.5	0.0	0.0	0.0	
Incr Delay (d2), s/veh	19.0	0.0	35.5	1.2	8.3	0.0	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	49.2	0.0	64.8	34.9	43.8	0.0	0.0	0.0	
1st-Term Q (Q1), veh/ln	4.3	0.0	1.5	1.1	0.7	0.0	0.0	0.0	
2nd-Term Q (Q2), veh/ln	1.6	0.0	3.7	0.1	0.2	0.0	0.0	0.0	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	1.67	0.00	1.72	1.80	1.80	0.00	0.00	0.00	
%ile Back of Q (95%), veh/ln	9.9	0.0	8.9	2.1	1.6	0.0	0.0	0.0	
%ile Storage Ratio (RQ%)	1.23	0.00	4.54	0.28	0.29	0.00	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Middle Lane Group Data									
Assigned Mvmt	0	2	0	4	0	6	0	8	
Lane Assignment		Т				Т			
Lanes in Grp	0	1	0	0	0	1	0	0	
Grp Vol (v), veh/h	0	593	0	0	0	652	0	0	
Grp Sat Flow (s), veh/h/ln	0	1777	0	0	0	1777	0	0	
Q Serve Time (g_s), s	0.0	22.1	0.0	0.0	0.0	19.8	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	22.1	0.0	0.0	0.0	19.8	0.0	0.0	
Lane Grp Cap (c), veh/h	0	734	0	0	0	966	0	0	
V/C Ratio (X)	0.00	0.81	0.00	0.00	0.00	0.67	0.00	0.00	
Avail Cap (c_a), veh/h	0	734	0	0	0	966	0	0	
Upstream Filter (I)	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	19.4	0.0	0.0	0.0	12.3	0.0	0.0	
Incr Delay (d2), s/veh	0.0	9.3	0.0	0.0	0.0	3.8	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	28.7	0.0	0.0	0.0	16.1	0.0	0.0	
1st-Term Q (Q1), veh/In	0.0	8.1	0.0	0.0	0.0	6.6	0.0	0.0	
2nd-Term Q (Q2), veh/ln	0.0	1.9	0.0	0.0	0.0	1.0	0.0	0.0	
· /·									

Existing (2019) Traffic Volumes 3:00 pm 09/21/2020 PM Peak Hour KHA

09/21/2020

3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.52	0.00	1.00	0.00	1.59	0.00	1.00	
%ile Back of Q (95%), veh/ln	0.0	15.2	0.0	0.0	0.0	12.1	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.07	0.00	0.00	0.00	0.41	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data						- 10		10	
Assigned Mvmt	0	12	0	14	0	16	0	18	
Lane Assignment		T+R		R		T+R		T+R	
Lanes in Grp	0	1	0	1	0	1	0	1	
Grp Vol (v), veh/h	0	602	0	60	0	679	0	185	
Grp Sat Flow (s), veh/h/ln	0	1800	0	1585	0	1849	0	1636	
Q Serve Time (g_s), s	0.0	22.1	0.0	2.7	0.0	19.9	0.0	7.1	
Cycle Q Clear Time (g_c), s	0.0	22.1	0.0	2.7	0.0	19.9	0.0	7.1	
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Eff Green (g_R), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop RT Outside Lane (P_R)	0.00	0.22	0.00	1.00	0.00	0.06	0.00	0.79	
Lane Grp Cap (c), veh/h	0	744	0	112	0	1005	0	421	
V/C Ratio (X)	0.00	0.81	0.00	0.54	0.00	0.68	0.00	0.44	
Avail Cap (c_a), veh/h	0	744	0	401	0	1005	0	720	
Upstream Filter (I)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
Uniform Delay (d1), s/veh	0.0	19.4	0.0	33.7	0.0	12.4	0.0	23.3	
Incr Delay (d2), s/veh	0.0	9.3	0.0	4.0	0.0	3.6	0.0	0.7	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	28.7	0.0	37.7	0.0	16.0	0.0	24.1	
1st-Term Q (Q1), veh/In	0.0	8.3	0.0	1.0	0.0	6.9	0.0	2.6	
2nd-Term Q (Q2), veh/In	0.0	1.9	0.0	0.1	0.0	1.0	0.0	0.1	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.51	0.00	1.80	0.00	1.58	0.00	1.80	
%ile Back of Q (95%), veh/ln	0.0	15.4	0.0	2.1	0.0	12.5	0.0	4.9	
%ile Storage Ratio (RQ%)	0.00	0.07	0.00	0.27	0.00	0.42	0.00	0.17	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summary		00.0							
HCM 6th Ctrl Delay		29.3							
HCM 6th LOS		С							

Kimley **»Horn**

FUTURE (2023) BUILD CAPACITY REPORTS

Weekday Morning Peak Hour

Weekday Evening Peak Hour

Intersection				
Intersection Delay, s/veh	8.4			
Intersection LOS	A			
		11/5		05
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	398	593	8	127
Demand Flow Rate, veh/h	406	605	8	129
Vehicles Circulating, veh/h	525	14	533	590
Vehicles Exiting, veh/h	194	527	4	29
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	11.6	7.1	4.6	6.7
Approach LOS	В	А	А	A
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Follow-Up Headway, s	2.609	2.609	2.609	2.609
Critical Headway, s	4.976	4.976	4.976	4.976
Entry Flow, veh/h	406	605	8	129
Cap Entry Lane, veh/h	808	1360	801	756
Entry HV Adj Factor	0.981	0.981	0.995	0.984
Flow Entry, veh/h	398	593	8	127
Cap Entry, veh/h	793	1334	797	744
V/C Ratio	0.503	0.445	0.010	0.171
Control Delay, s/veh	11.6	7.1	4.6	6.7
LOS	В	А	А	А
95th %tile Queue, veh	3	2	0	1

Intersection		
Intersection Delay, s/veh		
Intersection LOS		
Approach		NE
Entry Lanes		1
Conflicting Circle Lanes		1
Adj Approach Flow, veh/h		67
Demand Flow Rate, veh/h		68
Vehicles Circulating, veh/h		469
Vehicles Exiting, veh/h		462
Ped Vol Crossing Leg, #/h		0
Ped Cap Adj		1.000
Approach Delay, s/veh		5.0
Approach LOS		А
Lane	Left	
Lane	I en	
Designated Moves	LR	
Designated Moves Assumed Moves		
Designated Moves Assumed Moves RT Channelized	LR LR	
Designated Moves Assumed Moves RT Channelized Lane Util	LR LR 1.000	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s	LR LR 1.000 2.609	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s	LR LR 1.000	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	LR LR 1.000 2.609 4.976	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	LR LR 1.000 2.609 4.976 68	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor	LR LR 1.000 2.609 4.976 68 855	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	LR LR 1.000 2.609 4.976 68 855 0.984	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	LR LR 1.000 2.609 4.976 68 855 0.984 67	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	LR LR 1.000 2.609 4.976 68 855 0.984 67 841	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	LR LR 1.000 2.609 4.976 68 855 0.984 67 841 0.080	

ノーション・ * * * * * * * *

			•	•			•	•	•		•		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻኘ	<u>†</u>	1	ካካ	<u>†</u>	1		_ ≜ ⊅			t₽		
Traffic Volume (veh/h)	145	190	140	70	95	135	160	1095	280	295	880	290	
Future Volume (veh/h)	145	190	140	70	95	135	160	1095	280	295	880	290	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac		No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	158	207	152	76	103	147	174	1190	304	321	957	315	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	235	278	236	140	227	192	342	1362	344	362	1435	470	
Arrive On Green	0.07	0.15	0.15	0.04	0.12	0.12	0.07	0.48	0.48	0.13	0.55	0.55	
Sat Flow, veh/h	3456	1870	1585	3456	1870	1585	1781	2810	709	1781	2631	861	
Grp Volume(v), veh/h	158	207	152	76	103	147	174	747	747	321	645	627	
Grp Sat Flow(s),veh/h/lr		1870	1585	1728	1870	1585	1781	1777	1743	1781	1777	1715	
Q Serve(g_s), s	3.6	8.5	7.3	1.7	4.1	7.2	3.9	30.1	31.1	8.5	20.8	21.1	
Cycle Q Clear(g_c), s	3.6	8.5	7.3	1.7	4.1	7.2	3.9	30.1	31.1	8.5	20.8	21.1	
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.41	1.00		0.50	
Lane Grp Cap(c), veh/h	235	278	236	140	227	192	342	861	845	362	969	935	
V/C Ratio(X)	0.67	0.74	0.65	0.54	0.45	0.76	0.51	0.87	0.88	0.89	0.67	0.67	
Avail Cap(c_a), veh/h	279	372	315	279	372	315	412	861	845	412	969	935	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh		32.8	32.3	37.9	32.9	34.2	11.5	18.4	18.7	20.7	13.1	13.1	
Incr Delay (d2), s/veh	4.9	5.5	2.9	3.2	1.4	6.2	1.2	11.5	13.1	18.7	3.6	3.8	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh	n/ln2.9	7.4	5.2	1.4	3.4	5.4	2.5	19.6	20.2	8.0	12.8	12.6	
Unsig. Movement Delay	v, s/veh												
LnGrp Delay(d),s/veh	41.5	38.3	35.2	41.1	34.3	40.5	12.6	29.9	31.8	39.5	16.7	16.9	
LnGrp LOS	D	D	D	D	С	D	В	С	С	D	В	В	
Approach Vol, veh/h		517			326			1668			1593		
Approach Delay, s/veh		38.4			38.7			28.9			21.4		
Approach LOS		D			D			С			С		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)	14.8	43.0	6.8	16.0	9.9	47.9	9.0	13.8					
Change Period (Y+Rc),		4.0	3.5	4.0	4.0	4.0	3.5	4.0					
Max Green Setting (Gm		39.0	6.5	16.0	9.0	43.0	6.5	16.0					
Max Q Clear Time (g_c-		33.1	3.7	10.5	5.9	23.1	5.6	9.2					
Green Ext Time (p_c), s		4.3	0.0	0.8	0.1	8.8	0.0	0.5					
. ,	0.0	1.0	0.0	0.0	0.1	0.0	0.0	0.0					
Intersection Summary													
HCM 6th Ctrl Delay			28.0										
HCM 6th LOS			С										

09/26/2020

	۶	→	\mathbf{r}	4	+	•	•	1	*	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘኘ	^	1	ኘኘ	†	1	ሻ	≜ †⊅		٦	≜ †⊅	
Traffic Volume (veh/h)	145	190	140	70	95	135	160	1095	280	295	880	290
Future Volume (veh/h)	145	190	140	70	95	135	160	1095	280	295	880	290
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj (A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Lanes Open During Work Zone	ł											
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	158	207	152	76	103	147	174	1190	304	321	957	315
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Opposing Right Turn Influence	Yes			Yes			Yes			Yes		
Cap, veh/h	235	278	236	140	227	192	342	1362	344	362	1435	470
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Prop Arrive On Green	0.07	0.15	0.15	0.04	0.12	0.12	0.07	0.48	0.48	0.13	0.55	0.55
Unsig. Movement Delay												
Ln Grp Delay, s/veh	41.5	38.3	35.2	41.1	34.3	40.5	12.6	29.9	31.8	39.5	16.7	16.9
Ln Grp LOS	D	D	D	D	С	D	В	С	С	D	В	В
Approach Vol, veh/h		517			326			1668			1593	
Approach Delay, s/veh		38.4			38.7			28.9			21.4	
Approach LOS		D			D			С			С	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2	3	4	5	6	7	8			
Case No		1.1	4.0	2.0	3.0	1.1	4.0	2.0	3.0			
Phs Duration (G+Y+Rc), s		14.8	43.0	6.8	16.0	9.9	47.9	9.0	13.8			
Change Period (Y+Rc), s		4.0	4.0	3.5	4.0	4.0	4.0	3.5	4.0			
Max Green (Gmax), s		13.0	39.0	6.5	16.0	9.0	43.0	6.5	16.0			
Max Allow Headway (MAH), s		3.8	5.2	3.8	4.7	3.8	5.2	3.8	4.5			
Max Q Clear (g_c+l1), s		10.5	33.1	3.7	10.5	5.9	23.1	5.6	9.2			
Green Ext Time (g_e), s		0.3	4.3	0.0	0.8	0.1	8.8	0.0	0.5			
Prob of Phs Call (p_c)		1.00	1.00	0.82	1.00	0.98	1.00	0.97	1.00			
Prob of Max Out (p_x)		1.00	0.00	1.00	0.71	1.00	0.00	1.00	0.28			
Left-Turn Movement Data												
Assigned Mvmt		1		3		5		7				
Mvmt Sat Flow, veh/h		1781		3456		1781		3456				
Through Movement Data												
Assigned Mvmt			2		4		6		8			
Mvmt Sat Flow, veh/h			2810		1870		2631		1870			
Right-Turn Movement Data												
Assigned Mvmt			12		14		16		18			
Mvmt Sat Flow, veh/h			709		1585		861		1585			
Left Lane Group Data												
Assigned Mvmt		1	0	3	0	5	0	7	0			
Lane Assignment	L (Pr/Pm)		L (Prot)		(Pr/Pm)		L (Prot)				
	- (/		1 - 7		,		· · · · ·				

Future (2023) Build Traffic Projections 7:00 am 09/21/2020 AM Peak Hour KHA

09/26/2020

Lanes in Grp	1	0	2	0	1	0	2	0	
Grp Vol (v), veh/h	321	0	76	0	174	0	158	0	
Grp Sat Flow (s), veh/h/ln	1781	0	1728	0	1781	0	1728	0	
Q Serve Time (g_s), s	8.5	0.0	1.7	0.0	3.9	0.0	3.6	0.0	
Cycle Q Clear Time (g_c), s	8.5	0.0	1.7	0.0	3.9	0.0	3.6	0.0	
Perm LT Sat Flow (s_l), veh/h/ln	352	0	0	0	435	0	0	0	
Shared LT Sat Flow (s_sh), veh/h/ln	0	0	0	0	0	0	0	0	
Perm LT Eff Green (g_p), s	41.0	0.0	0.0	0.0	39.0	0.0	0.0	0.0	
Perm LT Serve Time (g_u), s	7.9	0.0	0.0	0.0	22.8	0.0	0.0	0.0	
Perm LT Q Serve Time (g_ps), s	7.9	0.0	0.0	0.0	10.8	0.0	0.0	0.0	
Time to First Blk (g_f), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Serve Time pre Blk (g_fs), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop LT Inside Lane (P_L)	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	
Lane Grp Cap (c), veh/h	362	0	140	0	342	0	235	0	
V/C Ratio (X)	0.89	0.00	0.54	0.00	0.51	0.00	0.67	0.00	
Avail Cap (c_a), veh/h	412	0.00	279	0.00	412	0.00	279	0.00	
Upstream Filter (I)	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	
Uniform Delay (d1), s/veh	20.7	0.0	37.9	0.0	11.5	0.0	36.6	0.0	
Incr Delay (d2), s/veh	18.7	0.0	3.2	0.0	1.2	0.0	4.9	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	39.5	0.0	41.1	0.0	12.6	0.0	41.5	0.0	
1st-Term Q (Q1), veh/ln	2.7	0.0	0.7	0.0	1.3	0.0	1.5	0.0	
2nd-Term Q (Q2), veh/ln	1.9	0.0	0.1	0.0	0.1	0.0	0.2	0.0	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	1.77	0.00	1.80	0.00	1.80	0.00	1.80	0.00	
%ile Back of Q (95%), veh/ln	8.0	0.0	1.4	0.0	2.5	0.0	2.9	0.0	
%ile Storage Ratio (RQ%)	1.36	0.00	0.25	0.00	0.15	0.00	0.31	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
. ,	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Middle Lane Group Data									
Assigned Mvmt	0	2	0	4	0	6	0	8	
Lane Assignment		Т		Т		Т		Т	
Lanes in Grp	0	1	0	1	0	1	0	1	
Grp Vol (v), veh/h	0	747	0	207	0	645	0	103	
Grp Sat Flow (s), veh/h/ln	0	1777	0	1870	0	1777	0	1870	
Q Serve Time (g_s), s	0.0	30.1	0.0	8.5	0.0	20.8	0.0	4.1	
Cycle Q Clear Time (g_c), s	0.0	30.1	0.0	8.5	0.0	20.8	0.0	4.1	
Lane Grp Cap (c), veh/h	0	861	0	278	0	969	0	227	
V/C Ratio (X)	0.00	0.87	0.00	0.74	0.00	0.67	0.00	0.45	
Avail Cap (c_a), veh/h	0	861	0	372	0	969	0	372	
Upstream Filter (I)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
Uniform Delay (d1), s/veh	0.0	18.4	0.0	32.8	0.0	13.1	0.0	32.9	
Incr Delay (d2), s/veh	0.0	11.5	0.0	5.5	0.0	3.6	0.0	1.4	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	29.9	0.0	38.3	0.0	16.7	0.0	34.3	
1st-Term Q (Q1), veh/In	0.0	10.8	0.0	3.7	0.0	7.1	0.0	1.8	
2nd-Term Q (Q2), veh/In	0.0	2.7	0.0	0.4	0.0	1.0	0.0	0.1	

Future (2023) Build Traffic Projections 7:00 am 09/21/2020 AM Peak Hour KHA

3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.45	0.00	1.80	0.00	1.58	0.00	1.80	
%ile Back of Q (95%), veh/ln	0.0	19.6	0.0	7.4	0.0	12.8	0.0	3.4	
%ile Storage Ratio (RQ%)	0.00	0.51	0.00	0.07	0.00	0.10	0.00	0.02	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data									
Assigned Mvmt	0	12	0	14	0	16	0	18	
Lane Assignment		T+R		R		T+R		R	
Lanes in Grp	0	1	0	1	0	1	0	1	
Grp Vol (v), veh/h	0	747	0	152	0	627	0	147	
Grp Sat Flow (s), veh/h/ln	0	1743	0	1585	0	1715	0	1585	
Q Serve Time (g_s), s	0.0	31.1	0.0	7.3	0.0	21.1	0.0	7.2	
Cycle Q Clear Time (g_c), s	0.0	31.1	0.0	7.3	0.0	21.1	0.0	7.2	
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Eff Green (g_R), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop RT Outside Lane (P_R)	0.00	0.41	0.00	1.00	0.00	0.50	0.00	1.00	
Lane Grp Cap (c), veh/h	0	845	0	236	0	935	0	192	
V/C Ratio (X)	0.00	0.88	0.00	0.65	0.00	0.67	0.00	0.76	
Avail Cap (c_a), veh/h	0	845	0	315	0	935	0	315	
Upstream Filter (I)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
Uniform Delay (d1), s/veh	0.0	18.7	0.0	32.3	0.0	13.1	0.0	34.2	
Incr Delay (d2), s/veh	0.0	13.1	0.0	2.9	0.0	3.8	0.0	6.2	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	31.8	0.0	35.2	0.0	16.9	0.0	40.5	
1st-Term Q (Q1), veh/In	0.0	11.0	0.0	2.7	0.0	7.0	0.0	2.7	
2nd-Term Q (Q2), veh/In	0.0	3.1	0.0	0.2	0.0	1.0	0.0	0.3	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.44	0.00	1.80	0.00	1.58	0.00	1.80	
%ile Back of Q (95%), veh/ln	0.0	20.2	0.0	5.2	0.0	12.6	0.0	5.4	
%ile Storage Ratio (RQ%)	0.00	0.52	0.00	0.87	0.00	0.09	0.00	0.92	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summary									
HCM 6th Ctrl Delay		28.0							
HCM 6th LOS		С							

09/26/2020

ノッシュー くちょう インシレイ

Lane Configurations I <thi< th=""> I <thi< th=""></thi<></thi<>				•	•			'	•			•		
Traffic Volume (veh/h) 25 10 15 15 35 18 185 30 1395 340 60 900 25 Future Volume (veh/h) 25 10 15 155 35 185 30 1395 340 60 900 25 Future Volume (veh/h) 25 10 15 155 35 185 30 1395 340 60 900 25 Future Volume (veh/h) 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Future Volume (veh/h) 25 10 15 155 35 185 30 1395 340 60 900 25 nitial Q (2b), veh 0 </td <td>Lane Configurations</td> <td></td> <td>्स</td> <td>1</td> <td>- ሽ</td> <td>- 12</td> <td></td> <td><u>۲</u></td> <td>∱}</td> <td></td> <td><u>۲</u></td> <td>∱î≽</td> <td></td> <td></td>	Lane Configurations		्स	1	- ሽ	- 1 2		<u>۲</u>	∱ }		<u>۲</u>	∱ î≽		
nitial Q(b), veh 0	Traffic Volume (veh/h)	25	10	15	155	35	185							
Ped-Bike Adj(A_pbT) 1.00	Future Volume (veh/h)		10		155	35	185	30	1395	340	60		25	
Parking Bus, Adj 1.00 <th1.00< th=""> <th1.00< th=""> 1.00<</th1.00<></th1.00<>	Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Mork Zone On Ápproach No No No No No Adj Sat Flow, vehrl/n 1870	Ped-Bike Adj(A_pbT)			1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Adj Sat Flow, veh/hu/n 1870 <	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Flow Rate, veh/h 27 11 16 168 38 201 33 1516 370 65 978 27 Peak Hour Factor 0.92 0.93 0.93 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61	Work Zone On Approact	h	No			No			No			No		
Peak Hour Factor 0.92 0.93 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.67 1.68 0.61 1.68 0.61 1.68 0.61 1.68 0.61 1.68 0.61 1.68 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.6	Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Peak Hour Factor 0.92 0.93 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.67 1.68 0.61 1.68 0.61 1.68 0.61 1.68 0.61 1.68 0.61 1.68 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.6	Adj Flow Rate, veh/h	27	11	16	168	38	201	33	1516	370	65	978	27	
Cap, veh/h 129 38 107 270 49 259 59 1705 401 89 2168 60 Arrive On Green 0.07 0.07 0.07 0.07 0.07 0.07 0.09 0.03 0.60 0.60 0.05 0.61 0.61 Sat Flow, veh/h 677 567 1585 1781 258 1366 1781 2854 672 1781 3532 98 Grp Volume(v), veh/h 38 0 16 168 0 1624 1781 1777 1749 1781 1777 183 3532 98 Grp Sat Flow(s), veh/h 1.0 0.00 7 5.0 0.0 10.3 1.3 32.0 36.4 2.7 10.9 10.9 Cycle Q Clear(g.c), s 2.3 0.0 0.7 5.0 0.0 10.3 1.3 32.0 36.4 2.7 10.9 10.9 Cycle Q Clear(g.c), s 2.3 0.0 0.7 5.0 0.0 10.3 1.3 32.0 36.4 2.7 10.9 10	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Cap, veh/h 129 38 107 270 49 259 59 1705 401 89 2168 60 Arrive On Green 0.07 0.07 0.07 0.07 0.07 0.07 0.09 0.03 0.60 0.60 0.60 0.61 0.61 Sat Flow, veh/h 677 567 1585 1781 258 1366 1781 284 672 1781 3532 98 Grp Sat Flow(s), veh/h 38 0 16 168 0 239 3823 923 653 65 492 513 Orgo In Lane 0.71 1.00 1.00 1.03 1.3 32.0 364 2.7 10.9 10.9 Cycle Q Clear(g.c), s 2.3 0.0 0.7 5.0 0.0 10.3 1.3 32.0 364 2.7 10.9 10.9 Cycle Q Clear(g.c), s 2.3 0.0 0.77 5.0 0.0 10.3 1.3 32.0 36.4 2.7 10.9 10.9 Cycle Q Clear(g.c), s.veh/n 120	Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Arrive On Green 0.07 0.07 0.07 0.07 0.19 0.19 0.03 0.60 0.60 0.05 0.61 0.61 Sat Flow, veh/h 677 567 1585 1781 288 672 1781 2834 672 672 1781 339 963 65 492 513 Grp Volume(v), veh/h 38 0 16 168 0 203 33 923 963 65 492 513 Grp Sat Flow(s), veh/h/14244 0 1585 1781 0 10.3 1.3 32.0 36.4 2.7 10.9 10.9 Orpo In Lane 0.71 1.00 1.03 1.3 32.0 36.4 2.7 10.9 10.9 Prop In Lane 0.71 1.00	Cap, veh/h	129	38	107	270	49	259	59	1705	401	89	2168	60	
Sinp Volume(v), veh/h 38 0 16 168 0 239 33 923 963 65 492 513 Grp Sat Flow(s), veh/h/In1244 0 1585 1781 0 1624 1781 1777 1749 1781 1777 1853 Q Serve(g. s), s 1.0 0.0 0.7 5.0 0.0 10.3 1.3 32.0 36.4 2.7 10.9 10.9 Cycle Q Clear(g_c), s 2.3 0.0 0.7 5.0 0.0 10.3 1.3 32.0 36.4 2.7 10.9 10.9 Cycle Q Clear(g_c), veh/h 168 0 107 270 0 308 59 1061 1045 89 1091 1137 V/C Ratio(X) 0.23 0.00 0.15 0.62 0.00 0.77 0.56 0.87 0.92 0.73 0.45 0.45 Avail Cap(c_a), veh/h 412 0 409 270 0 617 145 1061 1045 1091 1137 V/C Ratio(X) 0.0 1.0	Arrive On Green	0.07	0.07	0.07	0.07	0.19	0.19	0.03	0.60	0.60	0.05	0.61	0.61	
Sinp Volume(v), veh/h 38 0 16 168 0 239 33 923 963 65 492 513 Grp Sat Flow(s), veh/h/In1244 0 1585 1781 0 1624 1781 1777 1749 1781 1777 1853 Q Serve(g. s), s 1.0 0.0 0.7 5.0 0.0 10.3 1.3 32.0 36.4 2.7 10.9 10.9 Cycle Q Clear(g_c), s 2.3 0.0 0.7 5.0 0.0 10.3 1.3 32.0 36.4 2.7 10.9 10.9 Cycle Q Clear(g_c), veh/h 168 0 107 270 0 308 59 1061 1045 89 1091 1137 V/C Ratio(X) 0.23 0.00 0.15 0.62 0.00 0.77 0.56 0.87 0.92 0.73 0.45 0.45 Avail Cap(c_a), veh/h 412 0 409 270 0 617 145 1061 1045 1091 1137 V/C Ratio(X) 0.0 1.0	Sat Flow, veh/h													
Sinp Sat Flow(s), veh/h/In1244 0 1585 1781 0 1624 1781 1777 1749 1781 1777 1853 Q Serve(g.s), s 1.0 0.0 0.7 5.0 0.0 10.3 1.3 32.0 36.4 2.7 10.9 10.9 Cycle Q Clear(g_c), s 2.3 0.0 0.7 5.0 0.0 10.3 1.3 32.0 36.4 2.7 10.9 10.9 Prop In Lane 0.71 1.00 1.00 0.84 1.00 0.38 1.00 0.05 ane Grp Cap(c), veh/h 168 0 107 270 0 308 59 1061 1045 89 1091 1137 V/C Ratio(X) 0.23 0.00 0.15 0.62 0.00 0.77 0.56 0.87 0.92 0.73 0.45 0.45 Valid Cap(c_a), veh/h 112 0.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00														
Q Serve(g_s), S 1.0 0.0 0.7 5.0 0.0 10.3 1.3 32.0 36.4 2.7 10.9 10.9 Cycle Q Clear(g_c), s 2.3 0.0 0.7 5.0 0.0 10.3 1.3 32.0 36.4 2.7 10.9 10.9 Prop In Lane 0.71 1.00 1.00 0.84 1.00 0.38 1.00 0.05 Lane Grp Cap(c), veh/h 168 0 107 270 0 308 59 1061 1045 89 1091 1137 V/C Ratio(X) 0.23 0.00 1.00<														
Cycle Q Clear(g_c), s 2.3 0.0 0.7 5.0 0.0 10.3 1.3 32.0 36.4 2.7 10.9 10.9 Prop In Lane 0.71 1.00 1.00 0.84 1.00 0.38 1.00 0.05 ane Grp Cap(c), veh/h 168 0 107 270 0 308 59 1061 1045 89 1091 1137 V/C Ratio(X) 0.23 0.00 0.15 0.62 0.00 0.77 0.56 0.87 0.92 0.73 0.45 0.45 Avail Cap(c_a), veh/h 412 0 409 270 0 617 145 101 1.00<	• • • • •													
Drop In Lane 0.71 1.00 1.00 0.84 1.00 0.38 1.00 0.05 Lane Grp Cap(c), veh/h 168 0 107 270 0 308 59 1061 1045 89 1091 1137 V/C Ratio(X) 0.23 0.00 0.15 0.62 0.00 0.77 0.56 0.87 0.92 0.73 0.45 0.45 Avail Cap(c_a), veh/h 412 0 409 270 0 617 145 1061 1045 145 1091 1137 HCM Platoon Ratio 1.00 1														
Lane Grp Cap(c), veh/h 168 0 107 270 0 308 59 1061 1045 89 1091 1137 V/C Ratio(X) 0.23 0.00 0.15 0.62 0.00 0.77 0.56 0.87 0.92 0.73 0.45 0.45 Avail Cap(c_a), veh/h 412 0 409 270 0 617 145 1061 1045 145 1091 1137 HCM Platoon Ratio 1.00 <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>02.0</td> <td></td> <td></td> <td>10.0</td> <td></td> <td></td>			0.0			0.0			02.0			10.0		
V/C Ratio(X) 0.23 0.00 0.15 0.62 0.00 0.77 0.56 0.87 0.92 0.73 0.45 0.45 Avail Cap(c_a), veh/h 412 0 409 270 0 617 145 1061 1045 145 1091 1137 HCM Platoon Ratio 1.00			0			0			1061			1091		
Avail Cap(c_a), veh/h 412 0 409 270 0 617 145 1061 1045 145 1091 1137 HCM Platoon Ratio 1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
HCM Platoon Ratio 1.00 1.														
Jpstream Filter(I) 1.00 0.00 1														
Jniform Delay (d), s/veh 33.0 0.0 32.3 29.6 0.0 28.3 35.1 12.4 13.3 34.5 7.6 7.6 ncr Delay (d2), s/veh 0.7 0.0 0.6 4.4 0.0 4.2 7.9 9.7 14.4 10.9 1.3 1.3 nitial Q Delay(d3), s/veh 0.0 0.														
ncr Delay (d2), s/veh 0.7 0.0 0.6 4.4 0.0 4.2 7.9 9.7 14.4 10.9 1.3 1.3 nitial Q Delay(d3),s/veh 0.0 <t< td=""><td>• ()</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	• ()													
nitial Q Delay(d3),s/veh 0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
Wile BackOfQ(95%), veh/lr1.2 0.0 0.5 1.3 0.0 7.5 1.2 18.5 21.6 2.5 6.6 6.9 Jnsig. Movement Delay, s/veh 33.6 0.0 33.0 34.0 0.0 32.5 43.0 22.1 27.7 45.4 8.9 8.9 _nGrp Delay(d),s/veh 33.6 0.0 33.0 34.0 0.0 32.5 43.0 22.1 27.7 45.4 8.9 8.9 _nGrp LOS C A C C A C D C C D A Approach Vol, veh/h 54 407 1919 1070 Approach LOS C C C B 11.1 Change Period (G+Y+Rc), s 7.7 48.0 9.0 9.0 6.5 49.2 18.0 Change Period (Y+Rc), s 4.0 4.0 4.0 <td></td>														
Unsig. Movement Delay, s/veh _nGrp Delay(d),s/veh 33.6 0.0 33.0 34.0 0.0 32.5 43.0 22.1 27.7 45.4 8.9 8.9 _nGrp LOS C A C C A C D C C D A Approach Vol, veh/h 54 407 1919 1070 Approach Delay, s/veh 33.4 33.1 25.3 11.1 Approach LOS C C C B Timer - Assigned Phs 1 2 3 4 5 6 8 Phs Duration (G+Y+Rc), s7.7 48.0 9.0 9.0 6.5 49.2 18.0 18.0 18.0 Change Period (Y+Rc), s 4.0 4.0<														
LnGrp Delay(d),s/veh 33.6 0.0 33.0 34.0 0.0 32.5 43.0 22.1 27.7 45.4 8.9 8.9 _nGrp LOS C A C C A C D C C D A Approach Vol, veh/h 54 407 1919 1070 Approach Delay, s/veh 33.4 33.1 25.3 11.1 Approach LOS C C C B Timer - Assigned Phs 1 2 3 4 5 6 8 Phs Duration (G+Y+Rc), s7.7 48.0 9.0 9.0 6.5 49.2 18.0 18.0 18.0 Change Period (Y+Rc), s 4.0 4.0	()·			0.5	1.3	0.0	7.5	Ι.Ζ	10.5	21.0	2.0	0.0	0.9	
LnGrp LOS C A C C A C C D C C D A Approach Vol, veh/h 54 407 1919 1070 Approach Delay, s/veh 33.4 33.1 25.3 11.1 Approach LOS C C C B Timer - Assigned Phs 1 2 3 4 5 6 8 Phs Duration (G+Y+Rc), s7.7 48.0 9.0 9.0 6.5 49.2 18.0 Change Period (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Max Green Setting (Gmax \$, \$ 44.0 5.0 19.0 6.0 44.0 28.0 Max Q Clear Time (g_c+I1 \$, \$ 38.4 7.0 4.3 3.3 12.9 12.3 Green Ext Time (p_c), s 0.0 0.1 0.0 7.3 1.3 Intersection Summary 21.9 21.9 21.9 12.3				22.0	24.0	0.0	20 E	12.0	00.4	07.7	1 E 1	0 0	0 0	
Approach Vol, veh/h 54 407 1919 1070 Approach Delay, s/veh 33.4 33.1 25.3 11.1 Approach LOS C C C B Timer - Assigned Phs 1 2 3 4 5 6 8 Phs Duration (G+Y+Rc), s7.7 48.0 9.0 9.0 6.5 49.2 18.0 Change Period (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 Max Green Setting (Gmax\$, \$ 44.0 5.0 19.0 6.0 44.0 28.0 Max Q Clear Time (g_c+l14),7s 38.4 7.0 4.3 3.3 12.9 12.3 Green Ext Time (p_c), s 0.0 0.1 0.0 7.3 1.3 1.3 Intersection Summary	,													
Approach Delay, s/veh 33.4 33.1 25.3 11.1 Approach LOS C C C B Timer - Assigned Phs 1 2 3 4 5 6 8 Phs Duration (G+Y+Rc), s7.7 48.0 9.0 9.0 6.5 49.2 18.0 Change Period (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 Max Green Setting (Gmax\$, is 44.0 5.0 19.0 6.0 44.0 28.0 Max Q Clear Time (g_c+l14), 7s 38.4 7.0 4.3 3.3 12.9 12.3 Green Ext Time (p_c), s 0.0 0.1 0.0 7.3 1.3 Intersection Summary 41.9 21.9 21.9 12.3		U		U	U		U	U		U	U		А	
Approach LOS C C C C B Timer - Assigned Phs 1 2 3 4 5 6 8 Phs Duration (G+Y+Rc), s7.7 48.0 9.0 9.0 6.5 49.2 18.0 Change Period (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 Wax Green Setting (Gmax\$, 6 44.0 5.0 19.0 6.0 44.0 28.0 Max Q Clear Time (g_c+l14), 7s 38.4 7.0 4.3 3.3 12.9 12.3 Green Ext Time (p_c), s 0.0 0.1 0.0 7.3 1.3 Intersection Summary 41.9 21.9 21.9														
Timer - Assigned Phs 1 2 3 4 5 6 8 Phs Duration (G+Y+Rc), s7.7 48.0 9.0 9.0 6.5 49.2 18.0 Change Period (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 Max Green Setting (Gmax%, @ 44.0 5.0 19.0 6.0 44.0 28.0 Max Q Clear Time (g_c+l14), % 38.4 7.0 4.3 3.3 12.9 12.3 Green Ext Time (p_c), s 0.0 0.1 0.0 7.3 1.3 Intersection Summary HCM 6th Ctrl Delay 21.9 21.9														
Phs Duration (G+Y+Rc), s7.7 48.0 9.0 9.0 6.5 49.2 18.0 Change Period (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 Max Green Setting (Gmax\$, 8 44.0 5.0 19.0 6.0 44.0 28.0 Max Q Clear Time (g_c+l14), 7s 38.4 7.0 4.3 3.3 12.9 12.3 Green Ext Time (p_c), s 0.0 0.1 0.0 7.3 1.3 Intersection Summary 41.9 41.9 41.9 41.9	Approach LOS		С			C			С			В		
Phs Duration (G+Y+Rc), s7.7 48.0 9.0 9.0 6.5 49.2 18.0 Change Period (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 Max Green Setting (Gmax\$, 8 44.0 5.0 19.0 6.0 44.0 28.0 Max Q Clear Time (g_c+l14), 7s 38.4 7.0 4.3 3.3 12.9 12.3 Green Ext Time (p_c), s 0.0 0.1 0.0 7.3 1.3 Intersection Summary 41.9 41.9 41.9 41.9	Timer - Assigned Phs	1	2	3	4	5	6		8					
Change Period (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 Max Green Setting (Gmax\$, \$ 44.0 5.0 19.0 6.0 44.0 28.0 Max Q Clear Time (g_c+l14), \$ 38.4 7.0 4.3 3.3 12.9 12.3 Green Ext Time (p_c), \$ 0.0 4.8 0.0 0.1 0.0 7.3 1.3 Intersection Summary 41.9 21.9 21.9 12.3		. s7 7		9.0	9.0				-					
Max Green Setting (Gmax), & 44.0 5.0 19.0 6.0 44.0 28.0 Max Q Clear Time (g_c+l14), % 38.4 7.0 4.3 3.3 12.9 12.3 Green Ext Time (p_c), s 0.0 4.8 0.0 0.1 0.0 7.3 1.3 Intersection Summary														
Max Q Clear Time (g_c+11),7s 38.4 7.0 4.3 3.3 12.9 12.3 Green Ext Time (p_c), s 0.0 4.8 0.0 0.1 0.0 7.3 1.3 Intersection Summary 41.9 HCM 6th Ctrl Delay 21.9														
Green Ext Time (p_c), s 0.0 4.8 0.0 0.1 0.0 7.3 1.3 Intersection Summary														
ntersection Summary HCM 6th Ctrl Delay 21.9														
HCM 6th Ctrl Delay 21.9	. ,	0.0	-1.0	0.0	0.1	0.0	1.0		1.0					
,														
HCM 6th LOS C	HCM 6th Ctrl Delay													
	HCM 6th LOS			С										

09/26/2020

	۶	-	•	∢	ł	•	≺	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ę	1	۲	eî 👘		ň	A		ኘ	∱ ⊅	
Traffic Volume (veh/h)	25	10	15	155	35	185	30	1395	340	60	900	25
Future Volume (veh/h)	25	10	15	155	35	185	30	1395	340	60	900	25
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj (A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Lanes Open During Work Zon	e											
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	27	11	16	168	38	201	33	1516	370	65	978	27
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Opposing Right Turn Influence	e Yes			Yes			Yes			Yes		
Cap, veh/h	129	38	107	270	49	259	59	1705	401	89	2168	60
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Prop Arrive On Green	0.07	0.07	0.07	0.07	0.19	0.19	0.03	0.60	0.60	0.05	0.61	0.61
Unsig. Movement Delay												
Ln Grp Delay, s/veh	33.6	0.0	33.0	34.0	0.0	32.5	43.0	22.1	27.7	45.4	8.9	8.9
Ln Grp LOS	С	А	С	С	А	С	D	С	С	D	А	А
Approach Vol, veh/h		54			407			1919			1070	
Approach Delay, s/veh		33.4			33.1			25.3			11.1	
Approach LOS		С			С			С			В	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2	3	4	5	6		8			
Case No		2.0	4.0	1.2	7.3	2.0	4.0		4.0			
Phs Duration (G+Y+Rc), s		7.7	48.0	9.0	9.0	6.5	49.2		18.0			
Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	4.0	4.0		4.0			
Max Green (Gmax), s		6.0	44.0	5.0	19.0	6.0	44.0		28.0			
Max Allow Headway (MAH), s	;	3.8	5.2	3.8	5.3	3.8	5.1		5.5			
Max Q Clear (g_c+l1), s		4.7	38.4	7.0	4.3	3.3	12.9		12.3			
Green Ext Time (g_e), s		0.0	4.8	0.0	0.1	0.0	7.3		1.3			
Prob of Phs Call (p_c)		0.74	1.00	0.97	1.00	0.49	1.00		1.00			
Prob of Max Out (p_x)		1.00	0.00	1.00	0.00	1.00	0.00		0.02			
Left-Turn Movement Data												
Assigned Mvmt		1		3	7	5						
Mvmt Sat Flow, veh/h		1781		1781	677	1781						
Through Movement Data												
Assigned Mvmt			2		4		6		8			
Mvmt Sat Flow, veh/h			2854		567		3532		258			
Right-Turn Movement Data												
Assigned Mvmt			12		14		16		18			
Mvmt Sat Flow, veh/h			672		1585		98		1366			
Left Lane Group Data												
Assigned Mvmt		1	0	3	7	5	0	0	0			
Lane Assignment		L (Prot)	L	(Pr/Pm)	L+T	L (Prot)						

Future (2023) Build Traffic Projections 7:00 am 09/21/2020 AM Peak Hour KHA

09/26/2020

Lanes in Grp	1	0	1	1	1	0	0	0	
Grp Vol (v), veh/h	65	0	168	38	33	0	0	0	
Grp Sat Flow (s), veh/h/ln	1781	0	1781	1244	1781	0	0	0	
Q Serve Time (g_s), s	2.7	0.0	5.0	1.0	1.3	0.0	0.0	0.0	
Cycle Q Clear Time (g_c), s	2.7	0.0	5.0	2.3	1.3	0.0	0.0	0.0	
Perm LT Sat Flow (s_l), veh/h/ln	0	0	1383	1159	0	0	0	0	
Shared LT Sat Flow (s_sh), veh/h/ln	0	0	0	0	0	0	0	0	
Perm LT Eff Green (g_p), s	0.0	0.0	7.0	5.0	0.0	0.0	0.0	0.0	
Perm LT Serve Time (g_u), s	0.0	0.0	2.7	3.7	0.0	0.0	0.0	0.0	
Perm LT Q Serve Time (g_ps), s	0.0	0.0	2.5	1.0	0.0	0.0	0.0	0.0	
Time to First Blk (g_f), s	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	
Serve Time pre Blk (g_fs), s	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	
Prop LT Inside Lane (P_L)	1.00	0.00	1.00	0.71	1.00	0.00	0.00	0.00	
Lane Grp Cap (c), veh/h	89	0	270	168	59	0	0	0	
V/C Ratio (X)	0.73	0.00	0.62	0.23	0.56	0.00	0.00	0.00	
Avail Cap (c_a), veh/h	145	0	270	412	145	0	0	0	
Upstream Filter (I)	1.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	
Uniform Delay (d1), s/veh	34.5	0.0	29.6	33.0	35.1	0.0	0.0	0.0	
Incr Delay (d2), s/veh	10.9	0.0	4.4	0.7	7.9	0.0	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	45.4	0.0	34.0	33.6	43.0	0.0	0.0	0.0	
1st-Term Q (Q1), veh/In	1.1	0.0	0.4	0.6	0.6	0.0	0.0	0.0	
2nd-Term Q (Q2), veh/In	0.3	0.0	0.3	0.0	0.1	0.0	0.0	0.0	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	1.80	0.00	1.80	1.80	1.80	0.00	0.00	0.00	
%ile Back of Q (95%), veh/ln	2.5	0.0	1.3	1.2	1.2	0.0	0.0	0.0	
%ile Storage Ratio (RQ%)	0.31	0.00	0.67	0.16	0.22	0.00	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
. ,									
Middle Lane Group Data									
Assigned Mvmt	0	2	0	4	0	6	0	8	
Lane Assignment		Т		_		Т			
Lanes in Grp	0	1	0	0	0	1	0	0	
Grp Vol (v), veh/h	0	923	0	0	0	492	0	0	
Grp Sat Flow (s), veh/h/ln	0	1777	0	0	0	1777	0	0	
Q Serve Time (g_s), s	0.0	32.0	0.0	0.0	0.0	10.9	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	32.0	0.0	0.0	0.0	10.9	0.0	0.0	
Lane Grp Cap (c), veh/h	0	1061	0	0	0	1091	0	0	
V/C Ratio (X)	0.00	0.87	0.00	0.00	0.00	0.45	0.00	0.00	
Avail Cap (c_a), veh/h	0	1061	0	0	0	1091	0	0	
Upstream Filter (I)	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	12.4	0.0	0.0	0.0	7.6	0.0	0.0	
Incr Delay (d2), s/veh	0.0	9.7	0.0	0.0	0.0	1.3	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	22.1	0.0	0.0	0.0	8.9	0.0	0.0	
1st-Term Q (Q1), veh/In	0.0	9.8	0.0	0.0	0.0	3.3	0.0	0.0	
2nd-Term Q (Q2), veh/In	0.0	2.9	0.0	0.0	0.0	0.4	0.0	0.0	

Future (2023) Build Traffic Projections 7:00 am 09/21/2020 AM Peak Hour KHA

3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.46	0.00	1.00	0.00	1.80	0.00	1.00	
%ile Back of Q (95%), veh/ln	0.0	18.5	0.0	0.0	0.0	6.6	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.44	0.00	0.00	0.00	0.22	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data									
Assigned Mvmt	0	12	0	14	0	16	0	18	
Lane Assignment	0	T+R	0	R	0	T+R	0	T+R	
Lanes in Grp	0	1+1	0	к 1	0	1	0	1+1	
Grp Vol (v), veh/h	0	963	0	16	0	513	0	239	
Grp Sat Flow (s), veh/h/ln	0	903 1749	0	1585	0	1853	0	1624	
Q Serve Time (g_s), s	0.0	36.4	0.0	0.7	0.0	10.9	0.0	1024	
Cycle Q Clear Time (g_c), s	0.0	36.4	0.0	0.7	0.0	10.9	0.0	10.3	
Prot RT Sat Flow (s R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		0.0		0.0	0.0	0.0			
Prot RT Eff Green (g_R), s	0.0	0.0	0.0 0.00		0.0		0.0 0.00	0.0	
Prop RT Outside Lane (P_R)	0.00			1.00		0.05		0.84	
Lane Grp Cap (c), veh/h	0	1045	0	107	0	1137	0	308	
V/C Ratio (X)	0.00	0.92	0.00	0.15	0.00	0.45	0.00	0.77	
Avail Cap (c_a), veh/h	0	1045	0	409	0	1137	0	617	
Upstream Filter (I)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
Uniform Delay (d1), s/veh	0.0	13.3	0.0	32.3	0.0	7.6	0.0	28.3	
Incr Delay (d2), s/veh	0.0	14.4	0.0	0.6	0.0	1.3	0.0	4.2	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	27.7	0.0	33.0	0.0	8.9	0.0	32.5	
1st-Term Q (Q1), veh/ln	0.0	11.0	0.0	0.3	0.0	3.4	0.0	3.8	
2nd-Term Q (Q2), veh/ln	0.0	4.2	0.0	0.0	0.0	0.4	0.0	0.4	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.42	0.00	1.80	0.00	1.80	0.00	1.80	
%ile Back of Q (95%), veh/ln	0.0	21.6	0.0	0.5	0.0	6.9	0.0	7.5	
%ile Storage Ratio (RQ%)	0.00	0.52	0.00	0.07	0.00	0.23	0.00	0.26	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summary									
HCM 6th Ctrl Delay		21.9							
HCM 6th LOS		С							

	۶	$\mathbf{\hat{v}}$	1	t	ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1	ኘ	† †	≜ †₽	
Traffic Volume (veh/h)	25	25	180	1735	1030	15
Future Volume (veh/h)	25	25	180	1735	1030	15
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac				No	No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1969	1870	1870
Adj Flow Rate, veh/h	27	27	196	1886	1120	16
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	90	80	484	3022	2898	41
Arrive On Green	0.05	0.05	0.81	0.81	0.81	0.81
Sat Flow, veh/h	1781	1585	495	3839	3680	51
Grp Volume(v), veh/h	27	27	196	1886	555	581
Grp Sat Flow(s), veh/h/l		1585	495	1870	1777	1861
Q Serve(g_s), s	0.8	0.9	10.3	11.0	4.9	4.9
,	0.8	0.9	15.3	11.0	4.9	4.9
Cycle Q Clear(g_c), s				11.0	4.9	
Prop In Lane	1.00	1.00	1.00	2000	1400	0.03
Lane Grp Cap(c), veh/h		80	484	3022	1436	1504
V/C Ratio(X)	0.30	0.34	0.40	0.62	0.39	0.39
Avail Cap(c_a), veh/h	661	589	618	4034	1916	2007
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/ve		25.9	3.6	2.1	1.5	1.5
Incr Delay (d2), s/veh	1.8	2.4	0.5	0.2	0.2	0.2
Initial Q Delay(d3),s/vel		0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),ve	h/In0.7	0.7	0.9	0.2	0.1	0.1
Unsig. Movement Delay	/, s/veh					
LnGrp Delay(d),s/veh	27.7	28.4	4.2	2.3	1.7	1.7
LnGrp LOS	С	С	А	А	А	А
Approach Vol, veh/h	54			2082	1136	
Approach Delay, s/veh	28.1			2.5	1.7	
Approach LOS	С			A	А	
	Ŭ					
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc)		49.7		6.9		49.7
Change Period (Y+Rc),		4.0		4.0		4.0
Max Green Setting (Gr		61.0		21.0		61.0
Max Q Clear Time (g_c	+l1), s	17.3		2.9		6.9
Green Ext Time (p_c), s	5	28.4		0.1		9.5
Intersection Summary						
HCM 6th Ctrl Delay			2.6			
HCM 6th LOS			2.0 A			
			А			

	≯	\mathbf{F}	1	Ť	ţ	~				
Movement	EBL	EBR	NBL	NBT	SBT	SBR				
Lane Configurations	ኘ	1	5	††	≜ †₽	-				
Traffic Volume (veh/h)	25	25	180	1735	1030	15				
Future Volume (veh/h)	25	25	180	1735	1030	15				
Number	7	14	5	2	6	16				
Initial Q, veh	0	0	0	0	0	0				
Ped-Bike Adj (A_pbT)	1.00	1.00	1.00			1.00				
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00				
Work Zone On Approach	No			No	No					
Lanes Open During Work Zone	,									
Adj Sat Flow, veh/h/ln	1870	1870	1870	1969	1870	1870				
Adj Flow Rate, veh/h	27	27	196	1886	1120	16				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92				
Percent Heavy Veh, %	2	2	2	2	2	2				
Opposing Right Turn Influence	Yes		Yes							
Cap, veh/h	90	80	484	3022	2898	41				
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00				
Prop Arrive On Green	0.05	0.05	0.81	0.81	0.81	0.81				
Unsig. Movement Delay										
Ln Grp Delay, s/veh	27.7	28.4	4.2	2.3	1.7	1.7				
Ln Grp LOS	С	С	А	А	А	А				
Approach Vol, veh/h	54			2082	1136					
Approach Delay, s/veh	28.1			2.5	1.7					
Approach LOS	С			А	А					
Timer:		1	2	3	4	5	6	7	8	
			۷ ک	•	- - -	0	•			
				<u> </u>		•		•	•	
Assigned Phs			2		4		6		-	
Assigned Phs Case No									•	
Assigned Phs Case No Phs Duration (G+Y+Rc), s			2 6.0		4 9.0		6 8.0			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s			2 6.0 49.7		4 9.0 6.9		6 8.0 49.7			
Assigned Phs Case No Phs Duration (G+Y+Rc), s			2 6.0 49.7 4.0		4 9.0 6.9 4.0		6 8.0 49.7 4.0			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s		·	2 6.0 49.7 4.0 61.0		4 9.0 6.9 4.0 21.0		6 8.0 49.7 4.0 61.0			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+l1), s			2 6.0 49.7 4.0 61.0 5.4		4 9.0 6.9 4.0 21.0 4.0		6 8.0 49.7 4.0 61.0 5.1			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s			2 6.0 49.7 4.0 61.0 5.4 17.3		4 9.0 6.9 4.0 21.0 4.0 2.9		6 8.0 49.7 4.0 61.0 5.1 6.9	·		
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s			2 6.0 49.7 4.0 61.0 5.4 17.3 28.4		4 9.0 6.9 4.0 21.0 4.0 2.9 0.1		6 8.0 49.7 4.0 61.0 5.1 6.9 9.5			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Max Out (p_x)			2 6.0 49.7 4.0 61.0 5.4 17.3 28.4 1.00		4 9.0 6.9 4.0 21.0 4.0 2.9 0.1 0.57		6 8.0 49.7 61.0 5.1 6.9 9.5 1.00			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data			2 6.0 49.7 4.0 61.0 5.4 17.3 28.4 1.00 0.47		4 9.0 6.9 4.0 21.0 4.0 2.9 0.1 0.57 0.00		6 8.0 49.7 61.0 5.1 6.9 9.5 1.00 0.01			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Max Out (p_x)			2 6.0 49.7 4.0 61.0 5.4 17.3 28.4 1.00		4 9.0 6.9 4.0 21.0 4.0 2.9 0.1 0.57		6 8.0 49.7 61.0 5.1 6.9 9.5 1.00			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt			2 6.0 49.7 4.0 61.0 5.4 17.3 28.4 1.00 0.47 5		4 9.0 6.9 4.0 21.0 4.0 2.9 0.1 0.57 0.00 7		6 8.0 49.7 4.0 61.0 5.1 6.9 9.5 1.00 0.01			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Through Movement Data			2 6.0 49.7 4.0 61.0 5.4 17.3 28.4 1.00 0.47 5		4 9.0 6.9 4.0 21.0 4.0 2.9 0.1 0.57 0.00 7		6 8.0 49.7 4.0 61.0 5.1 6.9 9.5 1.00 0.01			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h			2 6.0 49.7 4.0 61.0 5.4 17.3 28.4 1.00 0.47 5 495		4 9.0 6.9 4.0 21.0 4.0 2.9 0.1 0.57 0.00 7 1781		6 8.0 49.7 4.0 61.0 5.1 6.9 9.5 1.00 0.01 1 0			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Through Movement Data Assigned Mvmt			2 6.0 49.7 4.0 61.0 5.4 17.3 28.4 1.00 0.47 5 495 2		4 9.0 6.9 4.0 21.0 4.0 2.9 0.1 0.57 0.00 7 1781 4		6 8.0 49.7 4.0 61.0 5.1 6.9 9.5 1.00 0.01 1 0 6			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Through Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h			2 6.0 49.7 4.0 61.0 5.4 17.3 28.4 1.00 0.47 5 495 2		4 9.0 6.9 4.0 21.0 4.0 2.9 0.1 0.57 0.00 7 1781 4		6 8.0 49.7 4.0 61.0 5.1 6.9 9.5 1.00 0.01 1 0 6			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+l1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Through Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Right-Turn Movement Data			2 6.0 49.7 4.0 61.0 5.4 17.3 28.4 1.00 0.47 5 495 2 3839		4 9.0 6.9 4.0 21.0 4.0 2.9 0.1 0.57 0.00 7 1781 4 0		6 8.0 49.7 4.0 61.0 5.1 6.9 9.5 1.00 0.01 1 0 6 3680			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Right-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Right-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Left Lane Group Data			2 6.0 49.7 4.0 61.0 5.4 17.3 28.4 1.00 0.47 5 495 2 3839 2 3839		4 9.0 6.9 4.0 21.0 4.0 2.9 0.1 0.57 0.00 7 7 1781 4 0 4 0		6 8.0 49.7 4.0 61.0 5.1 6.9 9.5 1.00 0.01 1 0 6 3680 6 3680			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Right-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h			2 6.0 49.7 4.0 61.0 5.4 17.3 28.4 1.00 0.47 5 495 2 3839 2 3839		4 9.0 6.9 4.0 21.0 4.0 2.9 0.1 0.57 0.00 7 7 1781 4 0 4 0	0	6 8.0 49.7 4.0 61.0 5.1 6.9 9.5 1.00 0.01 1 0 6 3680 6 3680	0		

Future (2023) Build Traffic Projections 7:00 am 09/21/2020 AM Peak Hour KHA

HCM 6th Signalized Intersection Capacity Analysis 500: Calumet Avenue & Maple Leaf Boulevard

09/26/2020

			•			•	•		
Lanes in Grp	0	1	0	1	0	0	0	0	
Grp Vol (v), veh/h	0	196	0	27	0	0	0	0	
Grp Sat Flow (s), veh/h/ln	0	495	0	1781	0	0	0	0	
Q Serve Time (g_s), s	0.0	10.3	0.0	0.8	0.0	0.0	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	15.3	0.0	0.8	0.0	0.0	0.0	0.0	
Perm LT Sat Flow (s_l), veh/h/ln	0	495	0	1781	0	0	0	0	
Shared LT Sat Flow (s_sh), veh/h/ln	0	0	0	0	0	0	0	0	
Perm LT Eff Green (g_p), s	0.0	45.7	0.0	0.0	0.0	0.0	0.0	0.0	
Perm LT Serve Time (g_u), s	0.0	40.8	0.0	0.0	0.0	0.0	0.0	0.0	
Perm LT Q Serve Time (g_ps), s	0.0	10.3	0.0	0.0	0.0	0.0	0.0	0.0	
Time to First Blk (g_f), s	0.0	0.0	0.0	0.0	0.0	45.7	0.0	0.0	
Serve Time pre Blk (g_fs), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop LT Inside Lane (P_L)	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	
Lane Grp Cap (c), veh/h	0	484	0	90	0	0	0	0	
V/C Ratio (X)	0.00	0.40	0.00	0.30	0.00	0.00	0.00	0.00	
Avail Cap (c_a), veh/h	0	618	0	661	0	0	0	0	
Upstream Filter (I)	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	3.6	0.0	25.9	0.0	0.0	0.0	0.0	
Incr Delay (d2), s/veh	0.0	0.5	0.0	1.8	0.0	0.0	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	4.2	0.0	27.7	0.0	0.0	0.0	0.0	
1st-Term Q (Q1), veh/In	0.0	0.4	0.0	0.3	0.0	0.0	0.0	0.0	
2nd-Term Q (Q2), veh/In	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.80	0.00	1.80	0.00	1.00	0.00	0.00	
%ile Back of Q (95%), veh/In	0.0	0.9	0.0	0.7	0.0	0.0	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.22	0.00	0.03	0.00	0.00	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
. ,									
Middle Lane Group Data									
Assigned Mvmt	0	2	0	4	0	6	0	0	
Lane Assignment	<u>^</u>	Т	•			T	<u>^</u>		
Lanes in Grp	0	2	0	0	0	1	0	0	
Grp Vol (v), veh/h	0	1886	0	0	0	555	0	0	
Grp Sat Flow (s), veh/h/ln	0	1870	0	0	0	1777	0	0	
Q Serve Time (g_s), s	0.0	11.0	0.0	0.0	0.0	4.9	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	11.0	0.0	0.0	0.0	4.9	0.0	0.0	
Lane Grp Cap (c), veh/h	0	3022	0	0	0	1436	0	0	
V/C Ratio (X)	0.00	0.62	0.00	0.00	0.00	0.39	0.00	0.00	
Avail Cap (c_a), veh/h	0	4034	0	0	0	1916	0	0	
Upstream Filter (I)	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	2.1	0.0	0.0	0.0	1.5	0.0	0.0	
Incr Delay (d2), s/veh	0.0	0.2	0.0	0.0	0.0	0.2	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	2.3	0.0	0.0	0.0	1.7	0.0	0.0	
1st-Term Q (Q1), veh/In	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2nd-Term Q (Q2), veh/In	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0	

Future (2023) Build Traffic Projections 7:00 am 09/21/2020 AM Peak Hour KHA

HCM 6th Signalized Intersection Capacity Analysis 500: Calumet Avenue & Maple Leaf Boulevard

3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.80	0.00	1.00	0.00	1.80	0.00	0.00	
%ile Back of Q (95%), veh/ln	0.0	0.2	0.0	0.0	0.0	0.1	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
. ,	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data					_		_	_	
Assigned Mvmt	0	12	0	14	0	16	0	0	
Lane Assignment				R		T+R			
Lanes in Grp	0	0	0	1	0	1	0	0	
Grp Vol (v), veh/h	0	0	0	27	0	581	0	0	
Grp Sat Flow (s), veh/h/ln	0	0	0	1585	0	1861	0	0	
Q Serve Time (g_s), s	0.0	0.0	0.0	0.9	0.0	4.9	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	0.0	0.0	0.9	0.0	4.9	0.0	0.0	
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Eff Green (g_R), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop RT Outside Lane (P_R)	0.00	0.00	0.00	1.00	0.00	0.03	0.00	0.00	
Lane Grp Cap (c), veh/h	0	0	0	80	0	1504	0	0	
V/C Ratio (X)	0.00	0.00	0.00	0.34	0.00	0.39	0.00	0.00	
Avail Cap (c_a), veh/h	0	0	0	589	0	2007	0	0	
Upstream Filter (I)	0.00	0.00	0.00	1.00	0.00	1.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	0.0	0.0	25.9	0.0	1.5	0.0	0.0	
Incr Delay (d2), s/veh	0.0	0.0	0.0	2.4	0.0	0.2	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	0.0	0.0	28.4	0.0	1.7	0.0	0.0	
1st-Term Q (Q1), veh/ln	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	
2nd-Term Q (Q2), veh/In	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	
3rd-Term Q (Q3), veh/In	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.00	0.00	1.80	0.00	1.80	0.00	0.00	
%ile Back of Q (95%), veh/ln	0.0	0.0	0.0	0.7	0.0	0.1	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.00	0.00	0.36	0.00	0.00	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summary									
HCM 6th Ctrl Delay		2.6							
HCM 6th LOS		А							

Intersection				
Intersection Delay, s/veh	7.6			
Intersection LOS	A			
				00
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	338	599	4	45
Demand Flow Rate, veh/h	344	610	4	46
Vehicles Circulating, veh/h	115	81	787	490
Vehicles Exiting, veh/h	421	710	4	201
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	5.5	7.9	5.9	4.9
Approach LOS	A	А	A	A
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Follow-Up Headway, s	2.609	2.609	2.609	2.609
Critical Headway, s	4.976	4.976	4.976	4.976
Entry Flow, veh/h	344	610	4	46
Cap Entry Lane, veh/h	1227	1270	618	837
Entry HV Adj Factor	0.982	0.982	0.990	0.978
Flow Entry, veh/h	338	599	4	45
Cap Entry, veh/h	1205	1247	612	819
V/C Ratio	0.280	0.480	0.006	0.055
Control Delay, s/veh	5.5	7.9	5.9	4.9
LOS	А	А	А	А
95th %tile Queue, veh	1	3	0	0

Intersection		
Intersection Delay, s/veh		
Intersection LOS		
Approach		NE
Entry Lanes		1
Conflicting Circle Lanes		1
Adj Approach Flow, veh/h		409
Demand Flow Rate, veh/h		417
Vehicles Circulating, veh/h		374
Vehicles Exiting, veh/h		85
Ped Vol Crossing Leg, #/h		0
Ped Cap Adj		1.000
Approach Delay, s/veh		9.2
Approach LOS		3.2 A
		Λ
	1 - 44	
Lane	Left	
Designated Moves	LR	
Designated Moves Assumed Moves		
Designated Moves Assumed Moves RT Channelized	LR LR	
Designated Moves Assumed Moves	LR	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s	LR LR 1.000 2.609	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s	LR LR 1.000 2.609 4.976	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	LR LR 1.000 2.609 4.976 417	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	LR LR 1.000 2.609 4.976 417 942	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor	LR LR 1.000 2.609 4.976 417 942 0.981	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	LR LR 1.000 2.609 4.976 417 942	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	LR LR 1.000 2.609 4.976 417 942 0.981	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	LR LR 1.000 2.609 4.976 417 942 0.981 409	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	LR LR 1.000 2.609 4.976 417 942 0.981 409 924	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	LR LR 1.000 2.609 4.976 417 942 0.981 409 924 0.443	

* + + * * * * * * * + *

		-	•	•			``	•			•		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻሻ	↑	1	ሻሻ	- †	1	ኘ	_ ≜ î≽		ሻ	_ ≜ î≽		
Traffic Volume (veh/h)	320	130	190	210	240	235	185	1015	60	175	1145	125	
Future Volume (veh/h)	320	130	190	210	240	235	185	1015	60	175	1145	125	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	ch	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	348	141	207	228	261	255	201	1103	65	190	1245	136	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	416	380	454	306	320	398	270	1537	91	315	1446	157	
Arrive On Green	0.12	0.20	0.20	0.09	0.17	0.17	0.08	0.45	0.45	0.08	0.45	0.45	
Sat Flow, veh/h	3456	1870	1585	3456	1870	1585	1781	3410	201	1781	3232	352	
Grp Volume(v), veh/h	348	141	207	228	261	255	201	574	594	190	683	698	
Grp Sat Flow(s),veh/h/l	n1728	1870	1585	1728	1870	1585	1781	1777	1834	1781	1777	1807	
Q Serve(g_s), s	8.6	5.7	9.3	5.6	11.7	12.5	5.2	22.9	22.9	4.9	30.0	30.3	
Cycle Q Clear(g_c), s	8.6	5.7	9.3	5.6	11.7	12.5	5.2	22.9	22.9	4.9	30.0	30.3	
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.11	1.00		0.19	
Lane Grp Cap(c), veh/h	n 416	380	454	306	320	398	270	801	827	315	795	809	
V/C Ratio(X)	0.84	0.37	0.46	0.74	0.82	0.64	0.75	0.72	0.72	0.60	0.86	0.86	
Avail Cap(c_a), veh/h	416	380	454	377	343	417	306	801	827	357	795	809	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/ve	h 37.5	29.9	25.5	38.8	34.8	29.1	18.7	19.4	19.4	15.8	21.6	21.7	
Incr Delay (d2), s/veh	13.8	0.6	0.7	6.2	13.4	3.1	8.4	5.5	5.3	2.3	11.6	11.8	
Initial Q Delay(d3),s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),ve		4.6	6.2	4.6	10.5	8.5	4.5	15.0	15.4	3.5	20.1	20.6	
Unsig. Movement Delay													
LnGrp Delay(d),s/veh	51.3	30.5	26.3	45.0	48.2	32.2	27.1	24.9	24.7	18.0	33.2	33.5	
LnGrp LOS	D	С	С	D	D	С	С	С	С	В	С	С	
Approach Vol, veh/h		696			744			1369			1571		
Approach Delay, s/veh		39.6			41.7			25.2			31.5		
Approach LOS		D			D			С			С		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc), \$ 1.0	43.3	11.2	21.7	11.2	43.0	14.0	18.9					
Change Period (Y+Rc),		4.0	3.5	4.0	4.0	4.0	3.5	4.0					
Max Green Setting (Gr		39.0	9.5	17.0	9.0	39.0	10.5	16.0					
Max Q Clear Time (g c		24.9	7.6	11.3	7.2	32.3	10.6	14.5					
Green Ext Time (p_c),		6.5	0.1	0.7	0.1	4.5	0.0	0.4					
Intersection Summary													
HCM 6th Ctrl Delay			32.6										
HCM 6th LOS			02.0 C										
			0										

09/26/2020

	≯	+	*	4	Ļ	*	•	†	*	*	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘኘ	1	1	ኘኘ	†	1	٦	≜ †⊅		ኘ	At≱	
Traffic Volume (veh/h)	320	130	190	210	240	235	185	1015	60	175	1145	125
Future Volume (veh/h)	320	130	190	210	240	235	185	1015	60	175	1145	125
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj (A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Lanes Open During Work Zone	Э											
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	348	141	207	228	261	255	201	1103	65	190	1245	136
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Opposing Right Turn Influence				Yes			Yes			Yes		
Cap, veh/h	416	380	454	306	320	398	270	1537	91	315	1446	157
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Prop Arrive On Green	0.12	0.20	0.20	0.09	0.17	0.17	0.08	0.45	0.45	0.08	0.45	0.45
Unsig. Movement Delay												
Ln Grp Delay, s/veh	51.3	30.5	26.3	45.0	48.2	32.2	27.1	24.9	24.7	18.0	33.2	33.5
Ln Grp LOS	D	С	С	D	D	С	С	С	C	В	С	С
Approach Vol, veh/h	_	696	-		744	-	-	1369	-		1571	-
Approach Delay, s/veh		39.6			41.7			25.2			31.5	
Approach LOS		D			D			С			С	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2	3	4	5	6	7	8			
Case No		1.1	4.0	2.0	3.0	1.1	4.0	2.0	3.0			
Phs Duration (G+Y+Rc), s		11.0	43.3	11.2	21.7	11.2	43.0	14.0	18.9			
Change Period (Y+Rc), s		4.0	4.0	3.5	4.0	4.0	4.0	3.5	4.0			
Max Green (Gmax), s		9.0	39.0	9.5	17.0	9.0	39.0	10.5	16.0			
Max Allow Headway (MAH), s		3.8	5.1	3.8	4.5	3.8	5.1	3.8	4.6			
Max Q Clear (g_c+l1), s		6.9	24.9	7.6	11.3	7.2	32.3	10.6	14.5			
Green Ext Time (g_e), s		0.1	6.5	0.1	0.7	0.1	4.5	0.0	0.4			
Prob of Phs Call (p_c)		0.99	1.00	1.00	1.00	0.99	1.00	1.00	1.00			
Prob of Max Out (p_x)		1.00	0.00	1.00	0.58	1.00	0.00	1.00	1.00			
Left-Turn Movement Data												
Assigned Mvmt		1		3		5		7				
Mvmt Sat Flow, veh/h		1781		3456		1781		3456				
Through Movement Data												
Assigned Mvmt			2		4		6		8			
Mvmt Sat Flow, veh/h			3410		1870		3232		1870			
Right-Turn Movement Data												
Assigned Mvmt			12		14		16		18			
Mvmt Sat Flow, veh/h			201		1585		352		1585			
Left Lane Group Data												
Assigned Mvmt		1	0	3	0	5	0	7	0			
									-			

Future (2023) Build Traffic Projections $\,$ 3:00 pm 09/21/2020 PM Peak Hour KHA

09/26/2020

Lanes in Grp	1	0	2	0	1	0	2	0	
Grp Vol (v), veh/h	190	0	228	0	201	0	348	0	
Grp Sat Flow (s), veh/h/ln	1781	0	1728	0	1781	0	1728	0	
Q Serve Time (g_s), s	4.9	0.0	5.6	0.0	5.2	0.0	8.6	0.0	
Cycle Q Clear Time (g_c), s	4.9	0.0	5.6	0.0	5.2	0.0	8.6	0.0	
Perm LT Sat Flow (s_l), veh/h/ln	481	0	0	0	392	0	0	0	
Shared LT Sat Flow (s_sh), veh/h/ln	0	0	0	0	0	0	0	0	
Perm LT Eff Green (g_p), s	39.0	0.0	0.0	0.0	39.0	0.0	0.0	0.0	
Perm LT Serve Time (g_u), s	16.4	0.0	0.0	0.0	8.7	0.0	0.0	0.0	
Perm LT Q Serve Time (g_ps), s	14.8	0.0	0.0	0.0	8.7	0.0	0.0	0.0	
Time to First Blk (g_f), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Serve Time pre Blk (g_fs), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop LT Inside Lane (P_L)	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	
Lane Grp Cap (c), veh/h	315	0	306	0	270	0	416	0	
V/C Ratio (X)	0.60	0.00	0.74	0.00	0.75	0.00	0.84	0.00	
Avail Cap (c_a), veh/h	357	0	377	0	306	0	416	0	
Upstream Filter (I)	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	
Uniform Delay (d1), s/veh	15.8	0.0	38.8	0.0	18.7	0.0	37.5	0.0	
Incr Delay (d2), s/veh	2.3	0.0	6.2	0.0	8.4	0.0	13.8	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	18.0	0.0	45.0	0.0	27.1	0.0	51.3	0.0	
1st-Term Q (Q1), veh/ln	1.8	0.0	2.3	0.0	1.9	0.0	3.5	0.0	
2nd-Term Q (Q2), veh/ln	0.2	0.0	0.3	0.0	0.6	0.0	0.8	0.0	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	1.80	0.00	1.80	0.00	1.80	0.00	1.79	0.00	
%ile Back of Q (95%), veh/ln	3.5	0.0	4.6	0.0	4.5	0.0	7.7	0.0	
%ile Storage Ratio (RQ%)	0.60	0.00	0.84	0.00	0.27	0.00	0.82	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
· · · ·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Middle Lane Group Data									
Assigned Mvmt	0	2	0	4	0	6	0	8	
Lane Assignment		Т		Т		Т		Т	
Lanes in Grp	0	1	0	1	0	1	0	1	
Grp Vol (v), veh/h	0	574	0	141	0	683	0	261	
Grp Sat Flow (s), veh/h/ln	0	1777	0	1870	0	1777	0	1870	
Q Serve Time (g_s), s	0.0	22.9	0.0	5.7	0.0	30.0	0.0	11.7	
Cycle Q Clear Time (g_c), s	0.0	22.9	0.0	5.7	0.0	30.0	0.0	11.7	
Lane Grp Cap (c), veh/h	0	801	0	380	0	795	0	320	
V/C Ratio (X)	0.00	0.72	0.00	0.37	0.00	0.86	0.00	0.82	
Avail Cap (c_a), veh/h	0	801	0	380	0	795	0	343	
Upstream Filter (I)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
Uniform Delay (d1), s/veh	0.0	19.4	0.0	29.9	0.0	21.6	0.0	34.8	
Incr Delay (d2), s/veh	0.0	5.5	0.0	0.6	0.0	11.6	0.0	13.4	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	24.9	0.0	30.5	0.0	33.2	0.0	48.2	
1st-Term Q (Q1), veh/In	0.0	8.6	0.0	2.5	0.0	11.4	0.0	5.1	
2nd-Term Q (Q2), veh/In	0.0	1.2	0.0	0.1	0.0	2.6	0.0	1.2	

Future (2023) Build Traffic Projections $\,$ 3:00 pm 09/21/2020 PM Peak Hour KHA

3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.0	1.52	0.0	1.80	0.00	1.44	0.00	1.65	
%ile Back of Q (95%), veh/ln	0.0	15.0	0.0	4.6	0.00	20.1	0.0	10.5	
%ile Storage Ratio (RQ%)	0.00	0.39	0.00	0.04	0.00	0.15	0.00	0.07	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data		- 10				10		10	
Assigned Mvmt	0	12	0	14	0	16	0	18	
Lane Assignment	^	T+R	0	R	0	T+R	•	R	
Lanes in Grp	0	1	0	1	0	1	0	1	
Grp Vol (v), veh/h	0	594	0	207	0	698	0	255	
Grp Sat Flow (s), veh/h/ln	0	1834	0	1585	0	1807	0	1585	
Q Serve Time (g_s), s	0.0	22.9	0.0	9.3	0.0	30.3	0.0	12.5	
Cycle Q Clear Time (g_c), s	0.0	22.9	0.0	9.3	0.0	30.3	0.0	12.5	
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	1585.1	0.0	0.0	0.0	1585.1	
Prot RT Eff Green (g_R), s	0.0	0.0	0.0	7.2	0.0	0.0	0.0	7.0	
Prop RT Outside Lane (P_R)	0.00	0.11	0.00	1.00	0.00	0.19	0.00	1.00	
Lane Grp Cap (c), veh/h	0	827	0	454	0	809	0	398	
V/C Ratio (X)	0.00	0.72	0.00	0.46	0.00	0.86	0.00	0.64	
Avail Cap (c_a), veh/h	0	827	0	454	0	809	0	417	
Upstream Filter (I)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
Uniform Delay (d1), s/veh	0.0	19.4	0.0	25.5	0.0	21.7	0.0	29.1	
Incr Delay (d2), s/veh	0.0	5.3	0.0	0.7	0.0	11.8	0.0	3.1	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	24.7	0.0	26.3	0.0	33.5	0.0	32.2	
1st-Term Q (Q1), veh/In	0.0	8.9	0.0	3.4	0.0	11.7	0.0	4.6	
2nd-Term Q (Q2), veh/ln	0.0	1.2	0.0	0.1	0.0	2.7	0.0	0.3	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.51	0.00	1.80	0.00	1.43	0.00	1.74	
%ile Back of Q (95%), veh/In	0.0	15.4	0.0	6.2	0.0	20.6	0.0	8.5	
%ile Storage Ratio (RQ%)	0.00	0.40	0.00	1.06	0.00	0.15	0.00	1.45	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summary									
HCM 6th Ctrl Delay		32.6							
HCM 6th LOS		С							
		-							

09/26/2020

ノッシュー くち インシャイ

Marriant		EDT						NDT			ODT		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	05	र्भ	1	1	₽	4.4.0	`	†	400	`	†ĵ	40	
Traffic Volume (veh/h)	25	35	55	335	35	140	40	1080	120	245	1290	40	
Future Volume (veh/h)	25	35	55	335	35	140	40	1080	120	245	1290	40	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	4 00	1.00	1.00	4.00	1.00	1.00	4.00	1.00	1.00	4 00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac		No	4070	4070	No	4070	4070	No	4070	4070	No	4070	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	27	38	60	364	38	152	43	1174	130	266	1402	43	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	104	75	112	374	84	335	70	1329	147	307	1918	59	
Arrive On Green	0.07	0.07	0.07	0.13	0.26	0.26	0.04	0.41	0.41	0.17	0.54	0.54	
Sat Flow, veh/h	516	1062	1585	1781	327	1308	1781	3227	357	1781	3520	108	
Grp Volume(v), veh/h	65	0	60	364	0	190	43	645	659	266	707	738	
Grp Sat Flow(s),veh/h/lr		0	1585	1781	0	1635	1781	1777	1806	1781	1777	1851	
Q Serve(g_s), s	2.0	0.0	2.8	10.0	0.0	7.4	1.8	25.3	25.4	10.9	22.6	22.7	
Cycle Q Clear(g_c), s	2.9	0.0	2.8	10.0	0.0	7.4	1.8	25.3	25.4	10.9	22.6	22.7	
Prop In Lane	0.42	0	1.00	1.00	•	0.80	1.00	700	0.20	1.00	000	0.06	
Lane Grp Cap(c), veh/h		0	112	374	0	419	70	732	744	307	968	1008	
V/C Ratio(X)	0.36	0.00	0.54	0.97	0.00	0.45	0.61	0.88	0.89	0.87	0.73	0.73	
Avail Cap(c_a), veh/h	454	0	400	374	0	717	118	732	744	331	968	1008	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel		0.0	33.8	29.5	0.0	23.6	35.6	20.4	20.5	30.3	12.9	13.0	
Incr Delay (d2), s/veh	1.2	0.0	4.0	39.7	0.0	0.8	8.4	14.4	14.6	19.7	4.8	4.7	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh		0.0	2.1	9.7	0.0	5.1	1.6	18.0	18.3	10.2	13.7	14.2	
Unsig. Movement Delay			27.0	60.0	0.0	04.0	44.0	24.0	25.4	E0 0	17 0	477	
LnGrp Delay(d),s/veh	35.0	0.0	37.8	69.2	0.0	24.3	44.0	34.9	35.1	50.0	17.8	17.7	
LnGrp LOS	D	A	D	E	A	С	D	C	D	D	B	В	
Approach Vol, veh/h		125			554			1347			1711		
Approach Delay, s/veh		36.4			53.8			35.3			22.7		
Approach LOS		D			D			D			С		
Timer - Assigned Phs	1	2	3	4	5	6		8					
Phs Duration (G+Y+Rc)	, \$ 7.0	35.0	14.0	9.3	7.0	45.0		23.3					
Change Period (Y+Rc),		4.0	4.0	4.0	4.0	4.0		4.0					
Max Green Setting (Gm		31.0	10.0	19.0	5.0	40.0		33.0					
Max Q Clear Time (g_c		27.4	12.0	4.9	3.8	24.7		9.4					
Green Ext Time (p_c), s		2.5	0.0	0.4	0.0	8.6		1.1					
Intersection Summary													
	_		32.3										
HCM 6th Ctrl Delay			32.3 C										
HCM 6th LOS			U										

09/26/2020

	۶	+	*	4	Ļ	*	<	1	1	×	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		با	1	۲	eî 👘		ľ	≜ †⊅		۲	≜ †}⊧	
Traffic Volume (veh/h)	25	35	55	335	35	140	40	1080	120	245	1290	40
Future Volume (veh/h)	25	35	55	335	35	140	40	1080	120	245	1290	40
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj (A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Lanes Open During Work Zone												
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	27	38	60	364	38	152	43	1174	130	266	1402	43
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Opposing Right Turn Influence	Yes			Yes			Yes			Yes		
Cap, veh/h	104	75	112	374	84	335	70	1329	147	307	1918	59
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Prop Arrive On Green	0.07	0.07	0.07	0.13	0.26	0.26	0.04	0.41	0.41	0.17	0.54	0.54
Unsig. Movement Delay												
Ln Grp Delay, s/veh	35.0	0.0	37.8	69.2	0.0	24.3	44.0	34.9	35.1	50.0	17.8	17.7
Ln Grp LOS	D	А	D	E	А	С	D	С	D	D	В	В
Approach Vol, veh/h		125			554			1347			1711	
Approach Delay, s/veh		36.4			53.8			35.3			22.7	
Approach LOS		D			D			D			С	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2	3	4	5	6		8			
Case No		2.0	4.0	1.2	7.3	2.0	4.0		4.0			
Phs Duration (G+Y+Rc), s		17.0	35.0	14.0	9.3	7.0	45.0		23.3			
Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	4.0	4.0		4.0			
Max Green (Gmax), s		14.0	31.0	10.0	19.0	5.0	40.0		33.0			
Max Allow Headway (MAH), s		3.8	5.1	3.8	4.9	3.8	5.1		5.5			
Max Q Clear (g_c+l1), s		12.9	27.4	12.0	4.9	3.8	24.7		9.4			
Green Ext Time (g_e), s		0.1	2.5	0.0	0.4	0.0	8.6		1.1			
Prob of Phs Call (p_c)		1.00	1.00	1.00	1.00	0.59	1.00		1.00			
Prob of Max Out (p_x)		1.00	0.00	1.00	0.00	1.00	0.00		0.00			
Left-Turn Movement Data												
Assigned Mvmt		1		3	7	5						
Mvmt Sat Flow, veh/h		1781		1781	516	1781						
Through Movement Data												
Assigned Mvmt			2		4		6		8			
Mvmt Sat Flow, veh/h			3227		1062		3520		327			
Right-Turn Movement Data												
Assigned Mvmt			12		14		16		18			
Mvmt Sat Flow, veh/h			357		1585		108		1308			
Left Lane Group Data												
Assigned Mvmt		1	0	3	7	5	0	0	0			
Lane Assignment		L (Prot)		(Pr/Pm)		L (Prot)	-					
		()				()						

Future (2023) Build Traffic Projections $\,$ 3:00 pm 09/21/2020 PM Peak Hour KHA

09/26/2020

							,		
Lanes in Grp	1	0	1	1	1	0	0	0	
Grp Vol (v), veh/h	266	0	364	65	43	0	0	0	
Grp Sat Flow (s), veh/h/ln	1781	0	1781	1578	1781	0	0	0	
Q Serve Time (g_s), s	10.9	0.0	10.0	2.0	1.8	0.0	0.0	0.0	
Cycle Q Clear Time (g_c), s	10.9	0.0	10.0	2.9	1.8	0.0	0.0	0.0	
Perm LT Sat Flow (s_l), veh/h/ln	0	0	1297	1212	0	0	0	0	
Shared LT Sat Flow (s_sh), veh/h/ln	0	0	0	0	0	0	0	0	
Perm LT Eff Green (g_p), s	0.0	0.0	7.3	5.3	0.0	0.0	0.0	0.0	
Perm LT Serve Time (g_u), s	0.0	0.0	2.4	5.3	0.0	0.0	0.0	0.0	
Perm LT Q Serve Time (g_ps), s	0.0	0.0	2.4	2.0	0.0	0.0	0.0	0.0	
Time to First Blk (g_f), s	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	
Serve Time pre Blk (g_fs), s	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	
Prop LT Inside Lane (P_L)	1.00	0.00	1.00	0.42	1.00	0.00	0.00	0.00	
Lane Grp Cap (c), veh/h	307	0	374	179	70	0	0	0	
V/C Ratio (X)	0.87	0.00	0.97	0.36	0.61	0.00	0.00	0.00	
Avail Cap (c_a), veh/h	331	0	374	454	118	0	0	0	
Upstream Filter (I)	1.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	
Uniform Delay (d1), s/veh	30.3	0.0	29.5	33.8	35.6	0.0	0.0	0.0	
Incr Delay (d2), s/veh	19.7	0.0	39.7	1.2	8.4	0.0	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	50.0	0.0	69.2	35.0	44.0	0.0	0.0	0.0	
1st-Term Q (Q1), veh/In	4.4	0.0	1.6	1.1	0.7	0.0	0.0	0.0	
2nd-Term Q (Q2), veh/ln	1.7	0.0	4.1	0.1	0.2	0.0	0.0	0.0	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	1.66	0.00	1.69	1.80	1.80	0.00	0.00	0.00	
%ile Back of Q (95%), veh/ln	10.2	0.0	9.7	2.2	1.6	0.0	0.0	0.0	
%ile Storage Ratio (RQ%)	1.26	0.00	4.91	0.28	0.29	0.00	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
. ,									
Middle Lane Group Data									
Assigned Mvmt	0	2	0	4	0	6	0	8	
Lane Assignment	<u>^</u>	Т		•	•	T			
Lanes in Grp	0	1	0	0	0	1	0	0	
Grp Vol (v), veh/h	0	645	0	0	0	707	0	0	
Grp Sat Flow (s), veh/h/ln	0	1777	0	0	0	1777	0	0	
Q Serve Time (g_s), s	0.0	25.3	0.0	0.0	0.0	22.6	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	25.3	0.0	0.0	0.0	22.6	0.0	0.0	
Lane Grp Cap (c), veh/h	0	732	0	0	0	968	0	0	
V/C Ratio (X)	0.00	0.88	0.00	0.00	0.00	0.73	0.00	0.00	
Avail Cap (c_a), veh/h	0	732	0	0	0	968	0	0	
Upstream Filter (I)	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	20.4	0.0	0.0	0.0	12.9	0.0	0.0	
Incr Delay (d2), s/veh	0.0	14.4	0.0	0.0	0.0	4.8	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	34.9	0.0	0.0	0.0	17.8	0.0	0.0	
1st-Term Q (Q1), veh/In	0.0	9.3	0.0	0.0	0.0	7.5	0.0	0.0	
2nd-Term Q (Q2), veh/In	0.0	2.9	0.0	0.0	0.0	1.3	0.0	0.0	

Future (2023) Build Traffic Projections $\,$ 3:00 pm 09/21/2020 PM Peak Hour KHA

3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.47	0.00	1.00	0.00	1.55	0.00	1.00	
%ile Back of Q (95%), veh/ln	0.0	18.0	0.0	0.0	0.0	13.7	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.43	0.00	0.00	0.00	0.46	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data		10						- 10	
Assigned Mvmt	0	12	0	14	0	16	0	18	
Lane Assignment		T+R		R		T+R		T+R	
Lanes in Grp	0	1	0	1	0	1	0	1	
Grp Vol (v), veh/h	0	659	0	60	0	738	0	190	
Grp Sat Flow (s), veh/h/ln	0	1806	0	1585	0	1851	0	1635	
Q Serve Time (g_s), s	0.0	25.4	0.0	2.8	0.0	22.7	0.0	7.4	
Cycle Q Clear Time (g_c), s	0.0	25.4	0.0	2.8	0.0	22.7	0.0	7.4	
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Eff Green (g_R), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop RT Outside Lane (P_R)	0.00	0.20	0.00	1.00	0.00	0.06	0.00	0.80	
Lane Grp Cap (c), veh/h	0	744	0	112	0	1008	0	419	
V/C Ratio (X)	0.00	0.89	0.00	0.54	0.00	0.73	0.00	0.45	
Avail Cap (c_a), veh/h	0	744	0	400	0	1008	0	717	
Upstream Filter (I)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
Uniform Delay (d1), s/veh	0.0	20.5	0.0	33.8	0.0	13.0	0.0	23.6	
Incr Delay (d2), s/veh	0.0	14.6	0.0	4.0	0.0	4.7	0.0	0.8	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	35.1	0.0	37.8	0.0	17.7	0.0	24.3	
1st-Term Q (Q1), veh/ln	0.0	9.5	0.0	1.0	0.0	7.9	0.0	2.7	
2nd-Term Q (Q2), veh/In	0.0	3.0	0.0	0.1	0.0	1.3	0.0	0.1	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.46	0.00	1.80	0.00	1.54	0.00	1.80	
%ile Back of Q (95%), veh/ln	0.0	18.3	0.0	2.1	0.0	14.2	0.0	5.1	
%ile Storage Ratio (RQ%)	0.00	0.44	0.00	0.27	0.00	0.48	0.00	0.17	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	5.0	5.0	5.0	5.0	5.0	0.0	3.0	
Intersection Summary									
HCM 6th Ctrl Delay		32.3							
HCM 6th LOS		С							

	۶	\mathbf{F}	1	t	ŧ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	1	۲.	† †	≜ †⊅	
Traffic Volume (veh/h)	75	130	55	1135	1645	10
Future Volume (veh/h)	75	130	55	1135	1645	10
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	•	•	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approad			1.00	No	No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	82	141	60	1234	1788	1070
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	209	186	240	2773	2825	17
Arrive On Green	0.12	0.12	0.78	0.78	0.78	0.78
Sat Flow, veh/h	1781	1585	262	3647	3714	22
Grp Volume(v), veh/h	82	141	60	1234	877	922
Grp Sat Flow(s),veh/h/l	n1781	1585	262	1777	1777	1866
Q Serve(g_s), s	3.3	6.7	10.1	9.1	16.7	16.8
Cycle Q Clear(g_c), s	3.3	6.7	26.9	9.1	16.7	16.8
Prop In Lane	1.00	1.00	1.00			0.01
Lane Grp Cap(c), veh/h		186	240	2773	1386	1456
V/C Ratio(X)	0.39	0.76	0.25	0.45	0.63	0.63
Avail Cap(c_a), veh/h	478	426	240	2773	1386	1456
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/ve		33.4	9.6	2.9	3.7	3.7
Incr Delay (d2), s/veh	1.2	6.2	2.5	0.5	2.2	2.1
Initial Q Delay(d3),s/vel		0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),ve		5.1	1.2	3.2	6.7	7.0
Unsig. Movement Delay						
LnGrp Delay(d),s/veh	33.1	39.6	12.0	3.4	5.9	5.8
LnGrp LOS	С	D	В	Α	Α	Α
Approach Vol, veh/h	223			1294	1799	
Approach Delay, s/veh	37.2			3.8	5.9	
Approach LOS	D			A	A	
		•				^
Timer - Assigned Phs	<u>,</u>	2		4		6
Phs Duration (G+Y+Rc		65.0		13.2		65.0
Change Period (Y+Rc)		4.0		4.0		4.0
Max Green Setting (Gn		61.0		21.0		61.0
Max Q Clear Time (g_c	;+I1), s	28.9		8.7		18.8
Green Ext Time (p_c),	S	13.4		0.5		20.8
Intersection Summary						
HCM 6th Ctrl Delay			7.2			
HCM 6th LOS			7.2 A			
			А			

	≯	\mathbf{F}	1	Ť	ţ	~				
Movement	EBL	EBR	NBL	NBT	SBT	SBR				
Lane Configurations	ň	1	ň	††	≜ †₽	-				
Traffic Volume (veh/h)	75	130	55	1135	1645	10				
Future Volume (veh/h)	75	130	55	1135	1645	10				
Number	7	14	5	2	6	16				
Initial Q, veh	0	0	0	0	0	0				
Ped-Bike Adj (A_pbT)	1.00	1.00	1.00			1.00				
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00				
Work Zone On Approach	No			No	No					
Lanes Open During Work Zone	,									
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870				
Adj Flow Rate, veh/h	82	141	60	1234	1788	11				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92				
Percent Heavy Veh, %	2	2	2	2	2	2				
Opposing Right Turn Influence	Yes		Yes							
Cap, veh/h	209	186	240	2773	2825	17				
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00				
Prop Arrive On Green	0.12	0.12	0.78	0.78	0.78	0.78				
Unsig. Movement Delay										
Ln Grp Delay, s/veh	33.1	39.6	12.0	3.4	5.9	5.8				
Ln Grp LOS	С	D	В	А	А	А				
Approach Vol, veh/h	223			1294	1799					
Approach Delay, s/veh	37.2			3.8	5.9					
Approach LOS	D			А	А					
Timer:		1	0	2	4	F	6	7	8	
		l	2	3	4	5	0	1	0	
Assigned Phs			2	3	4	3	6	1	0	
				3		5		1	0	
Assigned Phs			2	3	4	0	6	1	0	
Assigned Phs Case No			2 6.0	<u>ی</u>	4 9.0	5	6 8.0	1	0	
Assigned Phs Case No Phs Duration (G+Y+Rc), s			2 6.0 65.0	<u> </u>	4 9.0 13.2	5	6 8.0 65.0	1	0	
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s			2 6.0 65.0 4.0	3	4 9.0 13.2 4.0	5	6 8.0 65.0 4.0		0	
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s			2 6.0 65.0 4.0 61.0	3	4 9.0 13.2 4.0 21.0	5	6 8.0 65.0 4.0 61.0	1	0	
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s			2 6.0 65.0 4.0 61.0 5.5	3	4 9.0 13.2 4.0 21.0 4.0	5	6 8.0 65.0 4.0 61.0 5.1	1	0	
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+l1), s			2 6.0 65.0 4.0 61.0 5.5 28.9 13.4 1.00	3	4 9.0 13.2 4.0 21.0 4.0 8.7	5	6 8.0 65.0 4.0 61.0 5.1 18.8	1	0	
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s			2 6.0 65.0 4.0 61.0 5.5 28.9 13.4	3	4 9.0 13.2 4.0 21.0 4.0 8.7 0.5	5	6 8.0 65.0 4.0 61.0 5.1 18.8 20.8	1	0	
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c)			2 6.0 65.0 4.0 61.0 5.5 28.9 13.4 1.00	3	4 9.0 13.2 4.0 21.0 4.0 8.7 0.5 0.99	5	6 8.0 65.0 61.0 5.1 18.8 20.8 1.00		0	
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data			2 6.0 65.0 4.0 61.0 5.5 28.9 13.4 1.00	3	4 9.0 13.2 4.0 21.0 4.0 8.7 0.5 0.99	5	6 8.0 65.0 61.0 5.1 18.8 20.8 1.00		0	
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Max Out (p_x)			2 6.0 65.0 4.0 61.0 5.5 28.9 13.4 1.00 0.00	3	4 9.0 13.2 4.0 21.0 4.0 8.7 0.5 0.99 0.00	5	6 8.0 65.0 61.0 5.1 18.8 20.8 1.00 0.00			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt			2 6.0 65.0 4.0 61.0 5.5 28.9 13.4 1.00 0.00	3	4 9.0 13.2 4.0 21.0 4.0 8.7 0.5 0.99 0.00 7	5	6 8.0 65.0 61.0 5.1 18.8 20.8 1.00 0.00			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h			2 6.0 65.0 4.0 61.0 5.5 28.9 13.4 1.00 0.00	3	4 9.0 13.2 4.0 21.0 4.0 8.7 0.5 0.99 0.00 7	5	6 8.0 65.0 61.0 5.1 18.8 20.8 1.00 0.00			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Through Movement Data			2 6.0 65.0 4.0 61.0 5.5 28.9 13.4 1.00 0.00 5 262	3	4 9.0 13.2 4.0 21.0 4.0 8.7 0.5 0.99 0.00 7 7 1781	5	6 8.0 65.0 61.0 5.1 18.8 20.8 1.00 0.00			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+l1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Through Movement Data Assigned Mvmt			2 6.0 65.0 4.0 61.0 5.5 28.9 13.4 1.00 0.00 5 262 262 2	3	4 9.0 13.2 4.0 21.0 4.0 8.7 0.5 0.99 0.00 7 1781 4	5	6 8.0 65.0 4.0 61.0 5.1 18.8 20.8 1.00 0.00 1 0.00			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Through Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h			2 6.0 65.0 4.0 61.0 5.5 28.9 13.4 1.00 0.00 5 262 262 2	3	4 9.0 13.2 4.0 21.0 4.0 8.7 0.5 0.99 0.00 7 1781 4	5	6 8.0 65.0 4.0 61.0 5.1 18.8 20.8 1.00 0.00 1 0.00			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+l1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Through Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Right-Turn Movement Data			2 6.0 65.0 4.0 61.0 5.5 28.9 13.4 1.00 0.00 5 262 2 2 262 2 3647		4 9.0 13.2 4.0 21.0 4.0 8.7 0.5 0.99 0.00 7 1781 4 0		6 8.0 65.0 4.0 61.0 5.1 18.8 20.8 1.00 0.00 1 0.00 1 0 3714			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+I1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Through Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Right-Turn Movement Data Assigned Mvmt			2 6.0 65.0 4.0 61.0 5.5 28.9 13.4 1.00 0.00 5 262 2 3647 12		4 9.0 13.2 4.0 21.0 4.0 8.7 0.5 0.99 0.00 7 7 1781 4 0 4 0		6 8.0 65.0 4.0 61.0 5.1 18.8 20.8 1.00 0.00 1 0.00 1 0 3714 16			
Assigned Phs Case No Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s Max Green (Gmax), s Max Allow Headway (MAH), s Max Q Clear (g_c+l1), s Green Ext Time (g_e), s Prob of Phs Call (p_c) Prob of Phs Call (p_c) Prob of Max Out (p_x) Left-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h Right-Turn Movement Data Assigned Mvmt Mvmt Sat Flow, veh/h			2 6.0 65.0 4.0 61.0 5.5 28.9 13.4 1.00 0.00 5 262 2 3647 12	<u> </u>	4 9.0 13.2 4.0 21.0 4.0 8.7 0.5 0.99 0.00 7 7 1781 4 0 4 0	<u> </u>	6 8.0 65.0 4.0 61.0 5.1 18.8 20.8 1.00 0.00 1 0.00 1 0 3714 16	0	0	

Future (2023) Build Traffic Projections $\ 3:00\ pm\ 09/21/2020\ PM$ Peak Hour KHA

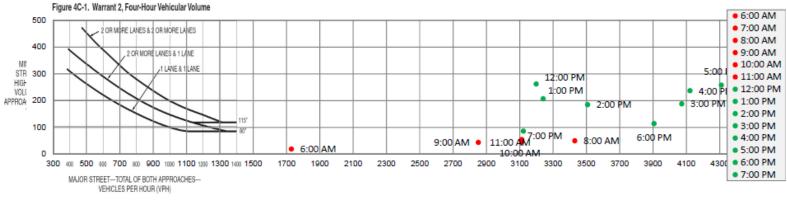
HCM 6th Signalized Intersection Capacity Analysis 500: Calumet Avenue & Maple Leaf Boulevard

09/26/2020

			•		•	•	•		
Lanes in Grp	0	1	0	1	0	0	0	0	
Grp Vol (v), veh/h	0	60	0	82	0	0	0	0	
Grp Sat Flow (s), veh/h/ln	0	262	0	1781	0	0	0	0	
Q Serve Time (g_s), s	0.0	10.1	0.0	3.3	0.0	0.0	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	26.9	0.0	3.3	0.0	0.0	0.0	0.0	
Perm LT Sat Flow (s_l), veh/h/ln	0	262	0	1781	0	0	0	0	
Shared LT Sat Flow (s_sh), veh/h/ln	0	0	0	0	0	0	0	0	
Perm LT Eff Green (g_p), s	0.0	61.0	0.0	0.0	0.0	0.0	0.0	0.0	
Perm LT Serve Time (g_u), s	0.0	44.2	0.0	0.0	0.0	0.0	0.0	0.0	
Perm LT Q Serve Time (g_ps), s	0.0	10.1	0.0	0.0	0.0	0.0	0.0	0.0	
Time to First Blk (g_f), s	0.0	0.0	0.0	0.0	0.0	61.0	0.0	0.0	
Serve Time pre Blk (g_fs), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop LT Inside Lane (P_L)	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	
Lane Grp Cap (c), veh/h	0	240	0	209	0	0	0	0	
V/C Ratio (X)	0.00	0.25	0.00	0.39	0.00	0.00	0.00	0.00	
Avail Cap (c_a), veh/h	0	240	0	478	0	0	0	0	
Upstream Filter (I)	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	9.6	0.0	31.9	0.0	0.0	0.0	0.0	
Incr Delay (d2), s/veh	0.0	2.5	0.0	1.2	0.0	0.0	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	12.0	0.0	33.1	0.0	0.0	0.0	0.0	
1st-Term Q (Q1), veh/In	0.0	0.5	0.0	1.4	0.0	0.0	0.0	0.0	
2nd-Term Q (Q2), veh/In	0.0	0.2	0.0	0.1	0.0	0.0	0.0	0.0	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.80	0.00	1.80	0.00	1.00	0.00	0.00	
%ile Back of Q (95%), veh/ln	0.0	1.2	0.0	2.6	0.0	0.0	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.30	0.00	0.10	0.00	0.00	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Middle Lane Group Data									
Assigned Mvmt	0	2	0	4	0	6	0	0	
Lane Assignment		Т				Т			
Lanes in Grp	0	2	0	0	0	1	0	0	
Grp Vol (v), veh/h	0	1234	0	0	0	877	0	0	
Grp Sat Flow (s), veh/h/ln	0	1777	0	0	0	1777	0	0	
Q Serve Time (g_s), s	0.0	9.1	0.0	0.0	0.0	16.7	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	9.1	0.0	0.0	0.0	16.7	0.0	0.0	
Lane Grp Cap (c), veh/h	0	2773	0	0	0	1386	0	0	
V/C Ratio (X)	0.00	0.45	0.00	0.00	0.00	0.63	0.00	0.00	
Avail Cap (c_a), veh/h	0	2773	0	0	0	1386	0	0	
Upstream Filter (I)	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	2.9	0.0	0.0	0.0	3.7	0.0	0.0	
Incr Delay (d2), s/veh	0.0	0.5	0.0	0.0	0.0	2.2	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	3.4	0.0	0.0	0.0	5.9	0.0	0.0	
1st-Term Q (Q1), veh/ln	0.0	1.6	0.0	0.0	0.0	2.9	0.0	0.0	
2nd-Term Q (Q2), veh/ln	0.0	0.2	0.0	0.0	0.0	0.8	0.0	0.0	

Future (2023) Build Traffic Projections $\ 3:00\ pm\ 09/21/2020\ PM$ Peak Hour KHA

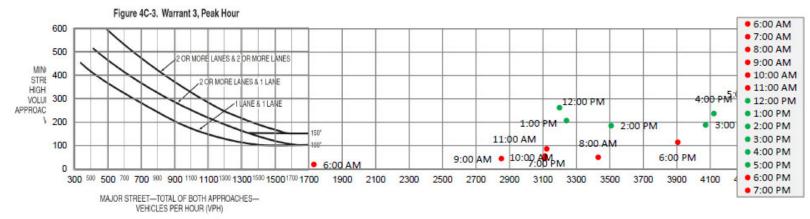
HCM 6th Signalized Intersection Capacity Analysis 500: Calumet Avenue & Maple Leaf Boulevard


3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.80	0.00	1.00	0.00	1.80	0.00	0.00	
%ile Back of Q (95%), veh/ln	0.0	3.2	0.0	0.0	0.0	6.7	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.02	0.00	0.00	0.00	0.16	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
. ,	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data								_	
Assigned Mvmt	0	12	0	14	0	16	0	0	
Lane Assignment				R		T+R			
Lanes in Grp	0	0	0	1	0	1	0	0	
Grp Vol (v), veh/h	0	0	0	141	0	922	0	0	
Grp Sat Flow (s), veh/h/ln	0	0	0	1585	0	1866	0	0	
Q Serve Time (g_s), s	0.0	0.0	0.0	6.7	0.0	16.8	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	0.0	0.0	6.7	0.0	16.8	0.0	0.0	
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Eff Green (g_R), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop RT Outside Lane (P_R)	0.00	0.00	0.00	1.00	0.00	0.01	0.00	0.00	
Lane Grp Cap (c), veh/h	0	0	0	186	0	1456	0	0	
V/C Ratio (X)	0.00	0.00	0.00	0.76	0.00	0.63	0.00	0.00	
Avail Cap (c_a), veh/h	0	0	0	426	0	1456	0	0	
Upstream Filter (I)	0.00	0.00	0.00	1.00	0.00	1.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	0.0	0.0	33.4	0.0	3.7	0.0	0.0	
Incr Delay (d2), s/veh	0.0	0.0	0.0	6.2	0.0	2.1	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	0.0	0.0	39.6	0.0	5.8	0.0	0.0	
1st-Term Q (Q1), veh/ln	0.0	0.0	0.0	2.5	0.0	3.0	0.0	0.0	
2nd-Term Q (Q2), veh/In	0.0	0.0	0.0	0.3	0.0	0.9	0.0	0.0	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.00	0.00	1.80	0.00	1.80	0.00	0.00	
%ile Back of Q (95%), veh/ln	0.0	0.0	0.0	5.1	0.0	7.0	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.00	0.00	2.59	0.00	0.17	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summary									
HCM 6th Ctrl Delay		7.2							
HCM 6th LOS		Α							

Kimley **Whorn**

SIGNAL WARRANT ANALYSIS

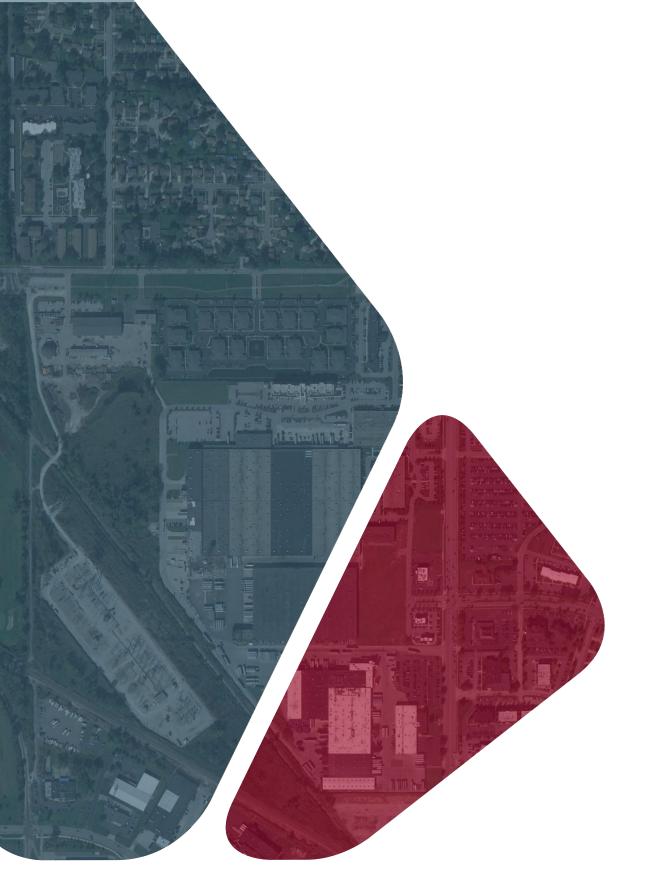
Kimley **»Horn**


Signal Warrant Analysis - Warrant 2

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Kimley **»Horn**

Signal Warrant Analysis - Warrant 3



Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Kimley **»Horn**

STREETLIGHT DATA

Node		Movement Volumes - Typical Weekday (Tues Thurs.)													
	Intersection	Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	ΤΟΤΑ
1	Fisher at Timrick	600	1	0	5	35	0	0	2	70	0	6	108	2	229
1	Fisher at Timrick	700	2	1	6	127	1	3	3	229	0	15	137	16	540
1	Fisher at Timrick	800	1	0	1	41	0	3	4	133	0	6	124	11	324
1	Fisher at Timrick	1500	1	0	2	43	0	4	26	213	0	6	351	171	817
1	Fisher at Timrick	1600	2	2	2	51	6	3	8	285	5	9	239	64	676
1	Fisher at Timrick	1700	0	6	9	61	2	4	11	317	3	2	289	96	800
2	Calumet at Fisher	600	77	804	87	73	612	36	34	17	74	34	34	56	1938
2	Calumet at Fisher	700	148	1233	321	339	926	34	122	208	150	80	45	154	3760
2	Calumet at Fisher	800	123	899	64	98	910	44	43	39	146	53	72	56	254
2	Calumet at Fisher	1500	203	1082	71	201	1263	95	88	93	182	244	264	269	405
2	Calumet at Fisher	1600	196	1152	89	191	1193	75	86	123	215	120	124	143	370
2	Calumet at Fisher	1700	215	1107	121	176	1179	69	88	151	233	132	147	132	375
3	Calumet at Braden	600	55	937	103	92	537	48	13	9	27	11	4	22	185
3	Calumet at Braden	700	46	1596	83	75	843	90	11	5	31	24	4	35	284
3	Calumet at Braden	800	38	1022	79	63	925	63	17	7	33	28	4	18	229
3	Calumet at Braden	1500	66	1083	21	36	1437	83	35	5	78	85	8	70	300
3	Calumet at Braden	1600	37	1180	22	26	1336	59	39	8	84	60	8	72	293
3	Calumet at Braden	1700	45	1243	23	25	1352	60	28	6	71	49	6	31	293
4	Calumet at Fran-lin	600	36	978	143	35	502	32	26	10	12	57	12	108	195
4	Calumet at Fran-lin	700	37	1538	395	71	802	24	31	13	20	179	43	210	336
4	Calumet at Fran-lin	800	27	1022	90	115	845	23	25	12	23	137	17	127	246
4	Calumet at Fran-lin	1500	47	987	143	262	1294	45	29	43	66	391	39	160	350
4	Calumet at Fran-lin	1600	31	1096	178	208	1226	30	19	32	60	244	20	148	329
4	Calumet at Fran-lin	1700	40	1144	203	187	1249	34	23	24	52	228	26	168	337
5	Calumet at Pepsi Access	600	27	1058	0	0	516	36	64	0	22	0	8	0	173
5	Calumet at Pepsi Access	700	27	1872	4	0	933	47	41	0	15	0	0	2	294
5	Calumet at Pepsi Access	800	14	1080	6	0	918	49	21	0	19	0	0	3	211
5	Calumet at Pepsi Access	1500	12	1102	3	2	1604	63	29	0	29	3	0	25	287
5	Calumet at Pepsi Access	1600	14	1215	0	0	1430	33	40	0	36	0	0	15	278
5	Calumet at Pepsi Access	1700	10	1290	2	0	1435	43	30	0	15	0	0	18	284
6	Calumet at 45th	600	204	805	68	57	383	98	128	34	117	83	48	172	219
6	Calumet at 45th	700	295	1037	134	121	628	222	547	81	212	178	95	339	388
6	Calumet at 45th	800	222	763	164	125	626	203	165	83	264	170	100	196	308
6	Calumet at 45th	1500	248	765	214	316	1016	357	155	92	453	216	114	221	416
6	Calumet at 45th	1600	267	843	292	311	1030	212	164	165	516	247	106	260	441
6	Calumet at 45th	1700	278	876	312	323	1000	208	205	155	517	214	119	263	447

4201 Winfield Road | Suite 600 | Warrenville, IL 60555 630-487-5550